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Abstract: Pavement distresses and potholes represent road hazards that can 
cause accidents and damages to vehicles. The latter may vary from a simple 
flat tyre to serious failures of the suspension system, and in extreme cases to 
collisions with third-party vehicles and even endanger passengers’ lives. The 
primary scientific aim of this study is to investigate the problem of road hazard 
detection for driving assistance purposes, towards the final goal of 
implementing such a technology on future intelligent vehicles. The proposed 
approach uses a depth sensor to generate an environment representation in 
terms of 3D point cloud that is then processed by a normal vector-based 
analysis and presented to the driver in the form of a traversability grid. Even 
small irregularities of the road surface can be successfully detected. This 
information can be used either to implement driver warning systems or to 
generate, using a cost-to-go planning method, optimal trajectories towards safe 
regions of the carriageway. The effectiveness of this approach is demonstrated 
on real road data acquired during an experimental campaign. Normal analysis 
and path generation are performed in post-analysis. This approach has been 
demonstrated to be promising and may help to drastically reduce fatal traffic 
casualties, as a high percentage of road accidents are related to pavement 
distress.  
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1 Introduction 

From a report of the Italian Institute for Statistics (ISTAT, 2013) a total of 1528 road 
accidents were caused by pavement distresses and road irregularities in 2012. In 
particular, 893 of the total accidents occurred on urban roads and 635 on highways. At 
the same time, on the other side of the world, 1051 pothole-related accidents occurred in 
Korea (Kim and Ryu, 2014), and among 4223 pothole-related accidents between 2008 
and 2013 up to 2961 accidents happened on regional highways, which is 70.1% of total 
pothole accidents. Furthermore, the American Society of Civil Engineers recently studied 
the effects of pavement surface conditions on traffic crash severity (Lee et al., 2015). The 
results from this study suggest that the severity levels of most of crash types increase in 
the case of badly maintained pavements. Beside the importance of road maintenance that 
can be considered as a passive form of safety, the present study proposes the use of 3D 
cameras as active safety devices to prevent road accidents by detection and avoidance of 
pavement distresses. 

Following such objectives, researchers are working on improving more and more the 
safety of future vehicles and their global performance; as a consequence, the problem of 
detecting road surface conditions may provide additional information for controlling 
vehicles’ speed and steering or developing driver warning systems. A past research in 
this field has used elevation maps for detecting and classifying road surface, such as in 
Oniga and Nedevschi (2010). A common solution for terrain traversability analysis 
foresees the definition of a digital elevation map and assigning two indexes to each of its 
cells: the roughness and the inclination index (Howard and Saraji, 2001; Osari, 2003; 
Seraji, 1999). The former is defined as the variance of the elevation values in a specific 
region of the environment, whereas the latter can be obtained as the average angle of 
adjacent elevation values with respect to their neighbours (Rohmer et al., 2010). As the  
problem of understanding the road irregularities is under investigation by researchers 
owing to its practical implication for autonomous vehicles, Broggi et al. (2013) propose  
a similar approach to detect road irregularities. In such approach, the point cloud is  
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first smartly sampled into a 2 – 1/2 dimension grid map, then samples are fitted into a 
rational B-Spline surface by means of re-weighted least square fitting and equalisation. A 
past approach using Kinect sensor can be found in Joubert et al. (2011), in which the 
authors propose a method to tag potholes using a plane segmentation based on the point 
elevation. 

As an improvement to these approaches, Bellone et al. (2013a, 2014a) address the 
problem using the Principal Component Analysis (PCA) and normal vectors analysis, 
proposing a new point descriptor that includes information of roughness and surface 
inclination with respect to the camera reference frame. Such descriptor was called 
Unevenness Point Descriptor (UPD) and it allows the underlying geometric pattern, 
associated with each single 3D point, to be fully captured, and difficult scenarios 
including ramps, edges, and negative obstacles to be correctly handled. The UPD was 
demonstrated in off-road and indoor environments. In this work, it is instead applied in 
the context of surface analysis in urban challenging roads. Past works on fast 3D normal 
estimation (Holzer et al., 2011, 2012), in which the authors present efficient methods for 
the real-time perception and scene segmentation for household environments using 
normal vectors, have inspired the idea of using a point descriptor to analyse road surface 
irregularities. The next step after detection and location is pavement distress avoidance, 
which represents one of the novel contributions of this paper. Hence, this work focuses 
on the detection of road irregularities and the implementation of a cost function which 
can be simply used for path planning purposes. The solver used in this application is the 
Dijkstra’s algorithm, yet the generality of the UPD makes it suitable in any other solver 
as well. The results demonstrate the validity of this system since: (i) it generates safe and 
free-collision paths in case of uneven pavement; (ii) it can directly work on a 3D-based 
space reconstruction avoiding DEM processing; (iii) even though no robot geometric 
shape has been considered, the UPD-based traversability index allows the planner to 
generate feasible paths thanks to the pre-sizing of a specific parameter for the calculation 
of the UPD. 

The remainder of the paper is organised as follows: Section 2 introduces our custom-
built test bed including hardware design and software architecture. Next, Section 3 
summarises the concept of traversability estimation using normal vectors and UPD 
analysis. Then, the concept of UPD is extended to build a cost function for the path 
planner. Experimental results are presented in Section 4. Finally, the conclusions are 
drawn in Section 5. 

2 System overview 

As the high complexity of autonomous systems requires the harmonious combination of 
hardware and software implementation, following the hardware characteristics of our test 
bed and the software implementation of the acquisition/elaboration architecture will be 
thoroughly described. 

2.1 Hardware features 

For the testing of the system during its development, it was integrated into a commercial 
car, serving as the experimental test bed, as shown in Figure 1. A Kinect sensor was 
mounted at the front of the vehicle using a custom-built holder made of aluminium 
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profiles that ensure lightness and minimal invasiveness. A suction pad is adopted to 
attach the holder to the car’s hood. The holder design and its position were chosen to 
provide short-range sensing and, at the same time, to optimise the look-ahead distance 
Lw, as shown in Figure 1(b). In this way, we obtain a longitudinal field of view of about 
2 m from the vehicle bumper, considering the vertical view angle of the camera α = 43 
deg and the sensor inclination angle β = 34 deg. The holder weights about 1.5 kg. 
Considering also the weight of the sensor, around 1.3 kg, the two parts assembled have a 
weight equal to 2.8 kg that is a way less than the suction pad maximum weight 
capability. 

Figure 1 The experimental test bed: (a) A Microsoft Kinect camera was mounted on the front of 
the test bed; (b) The system design, where α denotes the view angle, β labels the sensor 
inclination angle, and Lw is the look-ahead distance. In the inset the kinematic chain of 
the holder of the camera 

 

                     (a)                                                                                     (b)  

The holder and its position were conceived considering the specific vehicle and the 
sensor size. Moreover, it was properly designed to acquire short-range images. The 
longitudinal field of view ranges from 0.20 m starting from the vehicle bumper, perfectly 
acceptable for this applications. The maximum distance of about 3.50 m has been 
properly designed to maximise the capability of the Kinect sensor. However, higher 
distance should be taken into account for practical applications in order to have enough 
time for a safe manoeuvre using high-end sensors. As a consequence, our system has 
been tested only at relatively low-speed. 

Figure 1 shows the design of the holder and its assembling scheme on the vehicle. 
Specifically, the inset in Figure 1(b) shows the kinematic chain of the holder consisting 
of a two-link mechanism with adjustable length of both arms. The numbers 2 and 3 
denote the prismatic joints, whereas the letter ‘c’ denotes the revolute joint. The  
number 1 denotes the base joint where the holder is linked to the vehicle. The so-
designed structure has three degrees of freedom and it can be simply regulated on 
different test vehicles. The revolute joint is positioned on the elbow, whereas the sensor 
is in fixed wrist 4. Figure 1(b) shows the design scheme of the holder assembled on the 
vehicle showing all fundamental measurements in the vehicle reference frame. 

The Kinect camera provides 640  480 RGB-D images at 30 Hz. The sensor 
comprises a RGB camera and a 3D depth sensor. The RGB video camera provides 8-bit 
RGB images with resolution of 640  480 pixels. The sensor beam is 57  43 degrees in  
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horizontal and vertical direction, respectively. The 3D depth sensor consists of an infra-
red laser emitter and a monochrome depth camera. These two sensors provide a light 
coding able to acquire information about the distances between the sensor and each pixel 
in the image. The choice of such sensors has been determined by its cost-effectiveness in 
comparison with its performance. However, it is well known in the literature that this 
sensor performs poorly under direct sunlight. Further details on this prototype including 
camera calibration procedure can be found in Bellone et al. (2014b). 

2.2 Software architecture 

Processing of the sensor raw data is performed using the Point Cloud Library (PCL) 
(Rusu and Cousins, 2011). PCL presents an advanced and extensive approach to the 
subject of 3D perception, providing support for all the common 3D building blocks that 
applications require. The library contains state-of-the-art algorithms for: filtering, feature 
estimation, surface reconstruction, registration, model fitting and segmentation. The 
implemented algorithm includes a filtering stage with statistical outliers removal and 
voxelisation in order to increase the robustness of our framework. The complete 
acquisition and analysis framework is shown in Figure 2. It consists of two different 
stages. The former is the data acquisition framework including camera image capture and 
RGB-D point cloud reconstruction, this stage includes also filtering and downsampling 
for efficient data processing; whereas the later consists of a post-elaboration with normal 
vector estimation and surface interpretation using the UPD. Our application 
automatically performs filtering to remove outliers and voxelisation. Then the cloud is 
transformed from the camera reference frame into the vehicle reference and finally saved 
as a binary file. The post-elaboration iteratively loads point cloud files from memory  
and estimate normals. Since the UPD needs a search in a neighbourhood during its 
calculation, our implementation uses KdTree for fast neighbours selection taking a 
significant part of the computational burden since it needs to be run for every point of the 
cloud. Performance analysis of UPD including execution time can be found on previous 
researches (Bellone et al., 2013a,b). 

The interpreted 3D point cloud is then divided into a grid of terrain patches of 
0.075  0.075 m and projected onto a horizontal plane in order to reconstruct a grid i.e. 
the traversability map. Each 3D point is mapped to a specific cell of the reference grid. 
By assessing the unevenness associated with the set of points in each cell, it is possible to 
assign them a traversability index. Finally the path generation module works on the 
traversability map computing the path according to possible pavement distresses. 

Although data acquisition and elaboration are now performed as separated steps, they 
could be implemented as a unique application. However, the acquisition frame rate 
depends on sensor capability, whereas the UPD analysis depends on number of points in 
the cloud. Past evaluations on UPD calculation performance confirmed the capability to 
analyse images at 1 Hz on low-performance computers. However, the computational time 
also depends on the number of neighbours in which the UPD is computed. 

 
 
 



   

 

   

   
 

   

   

 

   

    Pavement distress detection and avoidance for intelligent vehicles 157    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 2 The acquisition and interpretation stage features depth camera image acquisition, RGB-
D image reconstruction and interpretation via UPD analysis, whereas the path planning 
stage includes the traversability grid reconstruction and path generation 

 

3 Pavement distresses detection and avoidance 

This work relies on UPD-based surface analysis for the extraction of local information 
from a point cloud. In order to provide the necessary background for those unfamiliar 
with the topic, this section recalls the concept of road surface analysis using the UPD 
local descriptor. Next, the concept is extended to derivate a cost function for path 
planning purposes. 

3.1 UPD traversability analysis 

Perception in urban scenarios requires accurate surface analysis and even though simple 
and widely used, the point elevation may be not enough for a reliable estimation of 
terrain traversability. As an alternative solution, we propose the use of normal vectors to 
estimate surface irregularities. UPD provides an efficient and simple choice to extract 
traversability information from 3D data. Using PCA and normal analysis for perception 
(Rusu, 2009; Rusu et al., 2008), the UPD describes surfaces through a normal vectors-
based analysis in a ring neighbourhood, resulting in a simple and efficient description of 
irregularities and inclination. 
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Summarising the concept, let us consider  3= ( , , )i i i iP p x y z   as a set of points 

constituting a point cloud. Then, let us select a query point qp P  and consider its 

neighbourhood defined as follows: 

 = :| | ,k
q q i q mP p P p p d    (1) 

where, k
qP  is the neighbourhood of the query point pq with radius dm which is a scalar 

value representing the size of the neighbourhood. Now, let us consider in


 as the normal 

vectors computed using the PCA in k
qP , with = 1,2, ,i k , where k is the number of 

neighbours in k
qP . Given the above, we can define the r-vector as vector sum of the 

normal vectors in k
qP , and computed as: 

=1

= .
kq

k i

i

r n
 

 (2) 

One should note that, even though the vector sum is calculated in k
pP , see equation (1), it 

includes also the information about the normal vectors of the points located in its vicinity 
but positioned outside the neighbourhoods. This means that the UPD includes a piece of 
information not only about the points located inside the neighbourhood, but also about 
those, which are located in its vicinity. Finally, the UPD in pq, can be defined as: 

   1, = , , , ,k q q q q
U q x y z kF p P r r r   (3) 

where q
xr , q

yr  and q
zr  are the scalar components of 

q
kr


, and q
k  is defined by the 

following equation (4). The components of 
q
kr


 provide information about the global 
direction of the local surface in the sensor reference frame. On the other hand, the 
parameter q

k  can be interpreted as a local inverse “unevenness index”, since it assesses 

the degree of local roughness. It depends on the distribution of the direction of the 
normal vectors in the neighbourhood and it is given by: 

= ,

q
k

q
k

r

k




 (4) 

where 
q
kr


 has been defined in equation (2), and k is the number of neighbours of pq in 
q

kP . By dividing by k, q
k  is normalised and neighbourhoods, including a different 

number of points, can be compared to each other. 
In summary, equation (3) defines a powerful local descriptor that can be used for 

road/terrain analysis and enhance the traversability awareness of a vehicle. From a 
mathematical point of view, vertical and horizontal surfaces might be represented by the 
same value of the unevenness index, since it provides regularity information only, 
regardless of the surface inclination. Although the horizontal surface can be traversed, 
the vertical one typically describes obstacles. In Figure 3(a), an explicative example is 
shown. Here, the ground reference frame is marked as blue arrows and a typical vector 
belonging to the ground is marked as a green arrow. One should note that a typical 
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ground normal vector should be aligned with the z-axis. In Figure 3(a), the red arrows 
mark vectors belonging to objects that may be interpreted as regular surface yet they are 
not traversable due to their orientation. As the matter of fact, their orientations are 
typically misaligned with respect to z-axis. Hence, given the query point pq and its  
r-vector, the angle αq between the z-axis and the r-vector can be obtained as: 

= arccos ,
q

z
q q

k

r

r


 
 
 
 
 

  (5) 

The orientation analysis can be translated into a simple condition where a point can be 
considered as non-traversable if αq > αmax, where αmax is a user choice and it should be 
taken according to the vehicle capability. In Figure 3(b) a graphical explanation can be 
seen. The green vector r1 can be considered to be ground, whereas the red vector r2 
belongs to a non-traversable surface. Their angles are respectively α1 and α2, and they are 
supposed to be α1 < αmax < α2. 

Figure 3 Orientation analysis applied on a 3D reconstruction obtained through a stereocamera 
images triangulation: (a) The orientation analysis superimposed on the camera image: 
the green arrow marks a typical normal vector belonging to the ground, whereas the red 
arrows mark typical normal vectors belonging to obstacles. In blue the vehicle 
reference frame; (b) Geometric interpretation of the orientation analysis based on the 
UPD 

 

                                            (a)                                                                          (b) 

3.2 UPD based path planning  

The description of terrains, or with more generality scenes, is finalised to compute safe 
robots movements according to environmental information (Ojeda et al., 2006). The UPD 
fits really well for this task, since it takes into account the terrain roughness using visual 
information. To demonstrate this practical usefulness, the UPD has been applied in a path 
planning task. 
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The planner studied for this simulation is a stand-alone discrete planner on already 
processed 3D data in the form of a point cloud. Hence, only the planning primitive  
will be considered, assuming sensory information as already acquired, no movement 
constraints are applied and the robot is considered as a free-fly-point. First the discrete 
planning problem will be defined, then a point cloud, processed with UPD, will be used 
to obtain a cost map. At this aim, the UPD will be integrated into the cost function in 
order to compute optimal safe paths. Finally, the results of the planning on such cost map 
will be exposed. 

Recent approaches in this field involve the study of discrete maps such as DEMs 
recently used in the path planning for mobile robot on rough terrain in volcano 
exploration (Ohki et al., 2013). In contrast to this approach that creates the digital map 
from 3D laser data and then computes a cost of each cell, the UPD based planner can 
directly work on 3D data avoiding loss of performance during the DEM generation. 

Now, drawing on LaValle (2006), where the classical theory works of motion 
planning can be found, let us define discrete planning problem considering the following 
hypothesis: 

1 Let X    be the space state;  

2 x X   let be defined the command space U;  

3 Let be defined a transition function ( , )f x u X  ,x X u U    and let be the 

transition function derivable as = ( , )x f x u ;  

4 Let sx X  be the initial state, or start state, and gx X  the goal state.  

Under this hypothesis, the objective is finding a finite succession of k consecutive actions 
 1 2= , ,k ku u u U   such that  1 = , = 1,2, ,i i ix f x u i k   , 0 = sx x  and =k gx x . 

This problem may have, in general, multiple solutions. From a robotic point of view, 
it is worth to ask which solution is the optimum and which factors affect the optimality of 
such solution. 

Although in literature a large number of ways to solve such problem considering the 
shortest path according to a distance norm exist, the context of this work aims to find an 
optimal solution that considers also the roughness of the pavement. For this purpose, 
given a motion plan as the succession of k actions πk, the cost function is given by the 
following relation: 

   
=1

= ,
k

k l i t i
i

L w l w T   (6) 

where li is the length of the step i or rather the distance between two states calculated as 
the Euclidean distance, Ti is so-defined as traversability index that indicate the cost 
associated to the traversability of the state i, and wl, wt are weights associated to the 
length and the traversability, respectively. 

Given a cost function, the problem moves to find the optimal motion plan *
k  such 

that  kL   is minimum, hence:  

   *min = .k kL L   (7) 
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Now, it is possible to find the optimal path according to the factors in equation (6), i.e. 
length and traversability, and by the minimisation of equation (7). 

For the proper application of UPD index in the minimisation of the cost function, let 
us better characterise the traversability index Ti. First, the traversability index expresses 
the traversabilty characteristics of a specific state, which, in this circumstance, is a point 
in the space. It must be remarked that, the context of this planner considers space 
information in the form of a point cloud. Hence, as a hypothesis for the practical 
implementation of this planner, each possible state is associated to one single point  
of the cloud and each single point has its associated UPD descriptor FU, according to 
equation (3). 

As a consequence, considering the cost function in equation (6), the traversability 
index in the query point pq can be calculated as follows: 

,

= ,1
, <

q max

q
q maxq

k

if

T
if

 

 


 




 (8) 

where αq has been defined in equation (5) as the orientation of the r-vector in specific 
query point, αmax is a user choice according to the vehicle capabilities and q

k  is defined 

in equation (4) as the unevenness index associated to the point pq. Regarding q
k , it is 

important to mention that it is an inverse index, since it is maximum in case of regular 
surfaces. For this reason has been used as inverse traversability index. 

Note that the ratio 1 / q
k  is always a positive real number other than zero since 

> 0q
k  always. Indeed, q

k  is positive-definite as the ratio between the norm of r-vector 

0
q
kr 


 and the number of points k > 0 in the neighbourhood of pq, see equation (4). It 

must be remarked that, the neighbourhood q
kP  must be not empty, it has to contain at 

least pi, hence 1k  . The case of = 0 =q
kk P   can be considered as trivial. As last 

remark, the r-vector derive from the sum of normal vectors those for convention always 
point upward, see Bellone et al. (2014a) where the ambiguity on the sign of the normal 

vectors has been explored. For this reason 0
q
kr 


 hence > 0 1 > 0
q q
k kr k   


. As a 

consequence also the traversability index Tq in the cost function can be considered as 
positive-definite. 

4 Results 

Experiments were performed in order to verify the effectiveness of the proposed 
approach for pavement distress detection. During the acquisition campaign, an 
experimental prototype car was driven on different types of roads, from regular urban 
road with new asphalt towards dirt roads presenting possible hazards. Images were 
acquired at 1 frame per second using a low-performance EeePC featuring an Intel Atom 
Processor. Although the frame rate may be increased using high performance computers, 
in this experiment the sampling rate can be considered reasonable considering typical 
travel speeds on irregular roads. In all figures the traversability map is shown on the left, 
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whereas the corresponding visual image is located on the right. Traversability maps have 
been calculated as the projection of the 3D cloud on the xy-plane. Hence, even though the 
UPD is calculated on a 3D cloud, the path planning refers to a 2D grid. In the 
traversability map green denotes traversable regions, whereas irregularities are denoted 
using increasing intensity colours. The optimal path is marked in black. 

Road datasets are composed of thousands of images, however here we show relevant 
sample scenarios including: (i) a comparison between an elevation method and our UPD 
based computation; (ii) two typical road scenarios with both regular asphalt and 
pavement distress; and (iii) a night scenarios featuring a possible dangerous situation that 
can be properly handled by our system. 

4.1 Comparison with existing methods 

As a preliminary experiment, a comparison against an existing technique is considered. 
Common methods used in this field use the elevation above the ground to detect and 
recognise irregularities, however it is not always true that a change in elevation implies 
the presence of an irregularity. As an example, the scenario of Figure 4 shows a 20 
degrees slope ramp to access an underground parking. The scene in Figure 4(c) is 
interpreted differently by the system that uses elevation information (traversability map 
of Figure 4(a)) than the one based on the UPD traversability map of Figure 4(b)). The 
green colour labels traversable cells, whereas uneven parts of the pavement are marked 
with increasing intensity colours. 

Figure 4 Comparison between a standard and the UPD approach in the case of a ramp: the UPD 
method (b) properly recognises the region in the centre as not regular, whereas an 
elevation-based method (a) detects the slope as not regular surface: (a) Traversability 
map processed using the elevation, the intensity of the colour increases as the elevation 
of the patch; (b) Traversability map calculated using the UPD method, the intensity of 
the colour increase as the unevenness index decreases; (c) Corresponding camera image 

 

                            (a)                                                        (b)                                        (c) 

Owing to the change in elevation, the conventional approach fails to recognise the cells 
pertaining to the ramp as drivable. In contrast the UPD-based method correctly detects 
the central portion of the ramp as irregular due to the presence of the stairs, whereas the  
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sides are properly recognised as regular and traversable. In Figure 4(b) the intensity of 
the colour increases as the terrain irregularity, i.e. as the value of q

k  decreases. As an 

additional detail, we can note that the use of the elevation method requires that 3D clouds 
must be represented into the vehicle reference frame and must be accurately calibrated, 
whereas an accurate calibration of the transformation in the case of UPD is not 
mandatory. This results in a reduction of possible misinterpretation using the UPD 
analysis. An additional advantage resides in a minor influence of the vehicle tilt on the 
global traversability performances, i.e. images do not require stabilisation using IMU roll 
and pitch estimates. 

4.2 Analysis on road datasets 

Although during the experimental campaign a large number of frames were acquired, 
here only significant scenarios are described. The first presented scenario in Figure 5 
shows a smooth pavement where the UPD correctly detects the road as safe with a 
corresponding optimal path that does not deviate from a straight line. In this case the 
value of the unevenness index is always close to 1, the green colour has been used to 
denote regular surfaces. The corresponding visual image is reported on the right. Then, 
during the acquisition campaign, the vehicle was driven towards challenging roads. The 
frame presented in Figure 6 presents a dirt road with irregularities i.e. a strong pavement 
distress. Note that it is properly recognised by the UPD analysis, the increasing intensity 
in the colour of each patch in the traversability map marks the position of the pothole 
respect to the vehicle. Finally, the solver can automatically generate a path to avoid the 
pavement distress, labelled by colouring the corresponding cells as black. The regions 
that may be unsafe for the vehicle are labelled in Figure 6 by increasing intensity colours 
according to the unevenness index value. 

Figure 5 Traversability map and generated path relative to a scenario featuring regular asphalt, 
the corresponding camera image is reported on the right, the generated path is marked 
using the black colour 
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Figure 6 In the case of a strong pavement distress the traversability map features a wide hardly 
traversable region and the corresponding generated path deviates from a pure straight 
line to avoid the irregularity 

 

In order to better quantify this result, the histogram in Figure 7 is proposed; the 
distribution of the unevenness index for the two cases of regular (marked in green) and 
uneven (denoted by red) road are shown. The values compared in the histogram 
correspond to previously proposed scenarios with specific reference to Figures 5 and 6. 
As a histogram aims at categorising elements, the bin number represents the number of 
points in the cloud having the same unevenness value. It is evident that, for the first 
scenario the unevenness index is close to 1 and all points fall in the first bin, on the 
contrary, scenario 2 presents an irregularity and the bins are spread along the x-axis. 

Figure 7 Histogram analysis showing a comparison between a regular surface (see Figure 5) and 
a pavement distress (Figure 6) 
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Notwithstanding that Kinect represents a good trade-off between performance and cost, it 
should be pointed out that such sensor has known limitation under direct sunlight. This 
issue greatly reduces the practical applicability of the Kinect in outdoor environments. 
Conversely, it works well under low lighting conditions, where the driver has reduced or 
compromised visibility. This is demonstrated in Figure 8, where a road hazard, (i.e. a 
pothole) in front of the car, is correctly detected by the system using the depth camera, 
whereas visual image is unusable in this case. This leaves space to the application of the 
same point descriptor to other high-end 3D sensor data. In general, point cloud 
processing with normal analysis can be successfully applied to road surface estimation, 
moreover the planner is able to properly drive the vehicle towards a safe region of the 
carriageway. 

Figure 8 Under low-lighting conditions, a pothole can be hardly detected. Nevertheless, the 
proposed system was able to detect the hazard and plan a safe path for the vehicle 

 

5 Conclusions 

In this work, an extension of the use of the Unevenness Point Descriptor to pavement 
distress detection and avoidance has been proposed. The results show that the evolution 
of pavement distress detection is promising and may help to drastically reduce fatal 
traffic casualties, as a high percentage of road accidents is related to road irregularities. 
The depth camera used in this implementation is an off-the-shelf cost effective sensor, 
thus it could be easily integrated with commercial cars. This research has been conducted 
including an acquisition campaign and a post analysis of grabbed data. The results 
encourage future research since it was demonstrated that the UPD-based method for 
pavement distress detection and avoidance can: (i) generate safe and free-collision paths 
in case of irregular pavement; (ii) directly work on a 3D based space reconstruction 
avoiding digital elevation maps processing; and (iii) let the planner generate feasible 
paths thanks to the pre-sizing of a size parameter for the calculation of the UPD even  
 
 



   

 

   

   
 

   

   

 

   

   166 M. Bellone and G. Reina    
 

    
 
 

   

   
 

   

   

 

   

       
 

though no robot geometric shape has been considered. As a further improvement, it 
would be possible to implement a reactive technique which might consider the 
irregularity for a proper navigation also considering kinematic or dynamic constraints of 
the robot. 
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