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Reliable terrain analysis is a key requirement for a mobile robot to operate safely in challenging environments,
such as in natural outdoor settings. In these contexts, conventional navigation systems that assume a priori
knowledge of the terrain geometric properties, appearance properties, or both, would most likely fail, due to
the high variability of the terrain characteristics and environmental conditions. In this paper, a self-learning
framework for ground detection and classification is introduced, where the terrain model is automatically
initialized at the beginning of the vehicle’s operation and progressively updated online. The proposed approach
is of general applicability for a robot’s perception purposes, and it can be implemented using a single sensor
or combining different sensor modalities. In the context of this paper, two ground classification modules are
presented: one based on radar data, and one based on monocular vision and supervised by the radar classifier.
Both of them rely on online learning strategies to build a statistical feature-based model of the ground, and
both implement a Mahalanobis distance classification approach for ground segmentation in their respective
fields of view. In detail, the radar classifier analyzes radar observations to obtain an estimate of the ground
surface location based on a set of radar features. The output of the radar classifier serves as well to provide
training labels to the visual classification module. Once trained, the vision-based classifier is able to discriminate
between ground and nonground regions in the entire field of view of the camera. It can also detect multiple
terrain components within the broad ground class. Experimental results, obtained with an unmanned ground
vehicle operating in a rural environment, are presented to validate the system. It is shown that the proposed
approach is effective in detecting drivable surface, reaching an average classification accuracy of about 80% on
the entire video frame with the additional advantage of not requiring human intervention for training or a priori
assumption on the ground appearance. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Future off-road mobile robots will have to explore larger
and larger areas, performing difficult tasks with limited
human supervision, while preserving, at the same time,
their safety. In this respect, the ability to detect a drivable
surface is a critical issue. If robotic vehicles could reliably
and robustly identify traversable ground in unstructured
and unknown environments, the implications would be of
great importance for many applications, including explo-
ration and reconnaissance, search and rescue operations,
and driving safety. In these contexts, conventional naviga-
tion systems that assume a priori knowledge of the geometric
terrain properties, appearance properties, or both, can ex-

hibit failure cases during periods of highly varying terrain
or environmental conditions, such as changing illumination
or weather phenomena such as fog and snow. To address
these issues, perception systems that use online learning
strategies may be beneficial for reliable long-term ground
detection.

In this paper, a novel approach for terrain analysis is
presented that combines radar sensor with monocular vi-
sion in a self-learning scheme. Specifically, a self-taught
radar classifier is used to estimate the ground (i.e., the
drivable surface) location and to automatically supervise
the training of a second classifier based on visual features.
Once trained, the visual classifier can segment the entire
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Figure 1. A millimeter-wave radar mounted with a fixed nod-
ding angle can be used to scan for drivable ground in the vicin-
ity of a robot.

video frame into ground and nonground, identifying also
ground regions located at a significant distance from the
camera. In addition, it can further subdivide ground into
subclasses corresponding to different terrain components.
By fusing range data provided by the radar and color in-
formation produced by the camera, it is finally, possible to
obtain a “rich” three-dimensional (3D) map of the environ-
ment. Both the radar and the visual classification module
rely on a mixture of Gaussians (MOG) model of the ground
with K components estimated online via expectation max-
imization (EM) and a Bayesian information criterion (BIC)
-based approach, and they adopt a Mahalanobis distance
outlier rejection scheme to estimate the membership likeli-
hood of a given observation to the ground class. The system
also features an online updating strategy that allows the
ground model to be continuously adapted to changes in the
ground characteristics. In previous research by the authors
(Reina, Underwood, Brooker, & Durrant-Whyte, 2011b), it
was shown that millimeter-wave (MMW) radar technology
can be effectively used to improve robot perception by di-
recting a mechanically scanned radar at the front of the ve-
hicle with a constant nodding angle to scan for traversable
ground in the vicinity of the vehicle, as shown in the ex-
planatory scheme of Figure 1. In such a configuration with
a single sweep of 360 deg, the system is able to survey a
finite but relatively large region of the environment, i.e.,
with a grazing angle γ of about 11 deg, a height h of about
2 m, and an elevation beam width θe of about 3 deg, the
conical radar beam intersects the ground at a distance of
approximately 11.4 m with a footprint varying between 5
and 9 m according to the specific scan angle α. In this work,
by combining short-range radar sensing with monocular
vision, the ground can be detected at far greater ranges,
which is a prerequisite for reliable long-range navigation.
Some preliminary parts of this research were presented in
Reina, Milella, & Underwood (2012a).

In summary, the following main advantages can be
drawn from the proposed system: (a) a unified self-learning
framework for ground detection that can be applied using a

single sensor or combining different sensor modalities; (b) a
radar-vision combination to extend the region of inference
from the narrow field of view of the radar to the wide field
of view of the camera, and to provide rich 3D environment
mapping by fusing range (radar) and color (vision) informa-
tion; (c) use of MOG for detection of multiple terrain com-
ponents within the broad class of ground; (d) an adaptive
online ground modeling approach that makes the system
feasible in long-range and long-duration applications.

The remainder of the paper proceeds as follows.
Section 2 describes related research. Section 3 provides an
overview of the self-learning framework. In Section 4, the
ground modeling and classification strategy is described.
Sections 5 and 6 detail the radar and the visual classifier, re-
spectively. In Section 7, the system is validated in field tests
performed with an unmanned vehicle. Section 8 concludes
this paper.

2. RELATED WORK

Traversable ground detection under all visibility conditions
is critical for a mobile robot to navigate safely in unstruc-
tured environments. Due to the importance of terrain sur-
face detection and classification for autonomous driving,
several approaches have been proposed in the recent liter-
ature, using different ground models and sensor combina-
tions.

In general, ground detection methods can be classified
into the following categories: deterministic (no learning),
supervised, and self-supervised. In deterministic solutions,
such as in Huertas, Matthies, & Rankin (2005), Pagnot &
Grandjean (1995), and Singh et al. (2000), some features of
the terrain including slope, roughness, or discontinuities
are analyzed to segment the traversable regions from the
obstacles. Some visual cues such as color, shape, and height
above the ground have also been employed for segmenta-
tion in DeSouza & Kak (2002) and Jocherm, Pomerleau, &
Thorpe (1995). However, these techniques assume that the
characteristics of obstacles and traversable regions are fixed,
and therefore they cannot easily adapt to changing environ-
ments. Without learning, such systems are constrained to a
limited range of predefined settings.

A number of systems that incorporate supervised
learning methods have been proposed, many of them in
the automotive field and for structured environments (e.g.,
in road-following applications). These include ALVINN
(Autonomous Land Vehicle in a Neural Network) by Pomer-
leau (1989), MANIAC (Multiple ALVINN Network in Au-
tonomous Control) by Jocherm et al. (1995), and the system
proposed by LeCun, Huang, and Bottou (2004). ALVINN
trained a neural network to follow roads and was success-
fully tested at highway speed in light traffic. MANIAC was
also a neural net-based road-following navigation system.
LeCun et al. used end-to-end learning to map visual in-
put to steering angles, producing a system that could avoid
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obstacles in off-road settings, but it did not have the capabil-
ity to navigate to a goal or map its surroundings. Many other
systems have been recently proposed that include super-
vised classification (Hong, Chang, Rasmussen, & Shneier,
2002; Manduchi, Castano, Talukder, & Matthies, 2003; Ras-
mussen, 2002; Reina, Ishigami, Nagatani, & Yoshida, 2010).
For instance, in Rasmussen (2002), features from a laser
range-finder and color and texture image cues are used to
segment ill-structured dirt, gravel, and asphalt roads by
training separate neural networks on labeled feature vec-
tors clustered by road type. These systems were trained
offline using hand-labeled data, thus limiting the scope of
their expertise to environments seen during training. Dima,
Vandapel, & Hebert (2004) recognized this problem and pro-
posed using active learning to limit the amount of labeled
data in a mobile robot navigation system. Only recently,
self-supervised systems have been developed that reduce
or eliminate the need for hand-labeled training data, thus
gaining flexibility in unknown environments.

With self-supervision, a reliable module that deter-
mines traversability can provide labels for input to another
classifier. Typically, the self-supervising module consists of
a classifier producing reliable results in the short range that
are then used to train a second classifier operating on dis-
tant scenes. Bootstrapping of the supervising module is
performed based on manual training or using some con-
straint on the ground geometry. For instance, in Brooks &
Iagnemma (2012), two proprioceptive terrain classifiers, one
based on wheel vibration and one based on estimated trac-
tion force, operating in the short range, are used to train an
exteroceptive vision-based classifier that identifies instances
of terrain classes in the long range. Both supervising mod-
ules rely on a priori knowledge of the terrain classes in the
environment and use either hand-labeled training data or
predefined thresholds, thus solving only in part the self-
supervision problem. In Vernaza, Taskar, & Lee (2008), data
from a stereo camera are used to train a monocular image
classifier that segments the scene into obstacles and ground
patches, in the submodular Markov random field (MRF)
framework. Specifically, first, the largest planar region in
the stereo disparity image is sought using a robust least-
squares procedure in order to determine ground points in
the short range. Then, short-range classification is used as
input to the learning algorithm for MRF-based classification
in the long range.

LIDAR sensors have been proven to be effective for su-
pervision in several works. A notable example can be found
in Dahlkamp, Kaehler, Thrun, & Bradski (2006) using a laser
scanner to supervise a monocular camera. Specifically, the
laser is employed to scan for flat surface area in the vicin-
ity of the vehicle. This is achieved by looking for height
differences within and across map cells and modeling point
uncertainties in a temporal Markov chain. The detected area
is then projected in the camera image and is used as training
data for a computer vision algorithm to learn online a visual

model of the road. LIDAR and vision are also combined in
a self-supervised framework in Zhou et al. (2012) to detect
terrain surfaces in forested environments. The supervising
module consists of a LIDAR-based manually trained SVM
classifier.

Although vision and LIDAR generally provide use-
ful features for scene classification (Reina, Milella, Halft, &
Worst, 2013), they are both affected by weather phenomena
or other environmental factors, such as dust. Some LIDARs
offer a degree of mitigation such as sensing the “last echo”
return, but this fails once the obscurant reaches a sufficient
density. Cameras are also highly affected by lighting con-
ditions and are ineffective in the presence of airborne ob-
scurants. Millimeter-wave radar operates at a wavelength
that penetrates dust and other visual obscurants. Further-
more, radar can provide information of distributed and
multiple targets that appear in a single observation, and
the wide beam width allows information to be extracted
from a greater footprint of the environment. By contrast, LI-
DAR systems are generally limited to one target return per
emission, although multipeak and last peak-based lasers
solve this problem to some extent and are becoming more
common. The ability of radar to perceive the environment
in low visibility conditions was demonstrated in numerous
papers, for example in Peynot, Underwood, & Scheding
(2009) and Reina, Underwood, Brooker, & Durrant-Whyte
(2011b). Nevertheless, radar has shortcomings as well, since,
although the large footprint is advantageous, specularity
and multipath effects result in ambiguities in the data, which
create challenges for accurate mapping or for feature extrac-
tion for classification and scene interpretation tasks. Conse-
quently, to expand the range of possible applications, radar
should be combined with other sensors. Video sensors lend
themselves very well to this purpose, since, in good visi-
bility conditions, they generally supply high resolution in
a suitable range of distances and provide several useful
features for classification of different objects present in the
scene (Mateus, Avina, & Devy, 2005). Due to the comple-
mentary characteristics of radar and vision, it is reasonable
to combine them in order to get improved performance.

The fusion of radar and vision has been discussed
mostly in the context of driver assistance systems featur-
ing object detection and classification modules (Alessan-
dretti, Broggi, & Cerri, 2007; Ji, Luciw, Weng, & Zeng, 2011;
Sole et al., 2004; Wu, Decker, Chang, Camus, and Eledath,
2009). For instance, in Sole et al. (2004), radar and vision
independently detect targets of interest, and then a high-
level fusion approach is adopted to validate radar targets
based on visual data. A radar-vision fusion method for ob-
ject classification into the category of vehicle or nonvehicle
is developed in Ji et al. (2011). It uses radar data to select
visual attention windows, which are then assigned a la-
bel and processed to extract features to train a multilayer
in-place learning network (MILN). In Alessandretti et al.
(2007), a vehicle detection system fusing radar and vision
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data is proposed. First, radar data are used to locate areas
of interest on images. Then, a vehicle search is performed in
these areas mainly based on vertical symmetry. A guard rail
detection approach and a method to manage overlapping
areas are also developed to speed up and improve the per-
formance of the system. The combination of a fixed radar
sensor with vision through sensor fusion techniques has
also been successfully demonstrated at the DARPA Urban
Challenge (Atreya et al., 2007). However, in this research, a
forward-facing RADAR system was employed with a nar-
row horizontal field of view of only 15 deg and specifically
tuned for vehicle detection. The sensor was mainly used for
position and velocity estimation of vehicles and obstacles
directly ahead rather than for general scene interpretation.

Research on radar-vision combination has been de-
veloped by the authors in previous work. A first ap-
proach was introduced in Milella, Reina, Underwood, &
Douillard (2011), which used an expert rule-based radar
ground detection approach with manually tuned thresh-
olds to supervise a visual classifier. The latter employed a
one-class classification strategy based on a single Gaussian
model of the ground to segment each incoming video frame
into ground and nonground regions. However, the use of a
unimodal Gaussian model poses limitations when multiple
terrain types are simultaneously present in the scene. The
adoption of machine learning to improve radar classifica-
tion was proposed in Reina, Milella, & Underwood (2012b).
Specifically, a self-trained radar classifier was developed,
where the ground model was automatically learned during
a bootstrapping stage and continuously updated based on
the most recent ground labels to predict ground instances
in successive scans. In this paper, the same radar classi-
fier serves as the supervising module for a visual classifier.
Both classifiers adopt a self-learning framework, which can
be considered to be generally applicable independent of
the type of sensors used. To account for multimodality in
the feature data set distribution, a MOG is used to model
the ground appearance, thus also allowing for detection
of terrain subclasses in addition to ground segmentation.
In summary, with respect to previous research by the au-
thors concerning radar-vision combination, a novelty of the
present work lies in the adoption of MOG for ground mod-
eling, using either radar or visual features. MOGs have been
previously adopted in the literature for visual ground mod-
eling [see, for instance, Dahlkamp et al. (2006)], however a
different approach is proposed here in which not only the
modes but also the number of components of the MOG are
estimated online using an EM-BIC algorithm, and this is ap-
plied to two sensor modalities. An additional novel contri-
bution is the development of a unified self-learning frame-
work for ground detection that can be applied to a single
sensor or combining different sensor modalities. Differently
from most approaches in the literature, the proposed system
does not require manual training of the supervising module
nor a priori assumptions on the ground geometry. The frame-

work is, therefore, of general applicability; for example, an
embodiment using rich 3D data (i.e., range and color infor-
mation) obtained by stereovision only was demonstrated
in Reina & Milella (2012) for an autonomous agricultural
vehicle. Here, radar data and monocular vision are used
instead.

3. SELF-LEARNING FRAMEWORK

Hereafter, by “self-learning” we will denote the automatic
training of a classification system. The training set can
be obtained either via a self-teaching approach, whereby
the classifier uses its own predictions to teach itself (i.e.,
self-taught learning), or using the output of another clas-
sification module (i.e., self-supervised learning) (Zhu, 2005).
Self-learning systems eliminate the need for hand-labeled
training data, thus gaining flexibility in unknown environ-
ments. The burden of hand-labeling data is relieved and
the system can robustly adapt to changing environments
on-the-fly.

In this paper, first a radar-based classifier using a self-
teaching strategy is recalled that labels radar observations
into ground and nonground. The training instances for the
radar-based classifier are automatically produced using a
rolling training set, which is initialized at the beginning
of the robot’s operation via a bootstrapping approach and
progressively updated. Initially, the robot has no knowledge
of the relationship between ground characteristics and the
ground class. The only underlying assumption to initialize
the training set is that the vehicle starts its operation from
an area free of obstacles in the radar field of view, so that
the radar system initially looks at ground only. Then, fea-
tures are extracted from the radar data and associated with
the ground class. When sufficient data are accumulated, the
radar-based ground classifier is trained. This allows the sys-
tem to predict the presence of ground in successive scans
based on past observations. New ground-labeled instances
are used to replace old ones, so that the model is progres-
sively updated. The radar classifier serves as well to train
a visual classification module that segments each incoming
video frame into ground and nonground regions. Specifi-
cally, the radar will scan for flat, drivable surface area in the
vicinity of the vehicle. Once identified, these radar-labeled
ground points are projected in the visual image and they are
used to set interest windows from which visual features in-
corporating the appearance of ground are extracted and em-
ployed to build a visual model of the ground. In addition to
the ground segmentation task, the visual classifier can also
discriminate different terrain components within the broad
class of ground. Thus, the radar-based and vision-based
modules work in cascade as shown in Figure 2, featuring
a self-supervised learning scheme that can perform image
segmentation and detect the different local components of
the ground.
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Figure 2. Architecture of the proposed self-learning scheme. The training stage of the visual classifier is supervised by the radar
classifier that in turn is self-taught.

4. STATISTICAL GROUND CLASSIFICATION

The accuracy of a ground classifier depends largely on the
model adopted for the ground, which is in turn tightly con-
nected with the environmental conditions. In natural set-
tings, conventional ground modeling strategies based on a
priori assumptions about the geometric or appearance char-
acteristics of the ground are not feasible. In this work, a
feature-based representation is adopted for both the radar
and the visual classifier. The model of the ground is then
built as a MOG, with K Gaussians to be found, defined
over the radar and visual feature space, respectively. Based
on this model, a Mahalanobis distance classifier is used for
the radar and the visual classifier to predict ground in their
respective fields of view.

Since only the ground class is defined and mod-
eled, the proposed method can be regarded as a one-class
classification approach (Tax, 2001). One-class classification
methods are generally useful in two-class classification
problems, where one class, referred to as the target class,
is relatively well-sampled, while the other class, referred to
as the outlier class, is relatively undersampled or is difficult
to model. Typically, the objective of a one-class classifier
is to construct a decision boundary that separates the in-
stances of the target class from all other possible objects. In
our case, ground samples constitute the target class, while
nonground samples (i.e., obstacles) are regarded as the out-
lier class. It is worth noting that, in principle, both ground
and nonground samples may be obtained from the radar
module to train other types of classifiers (e.g., discrimina-
tive two-class classifiers), without affecting the idea behind
the self-learning framework. Nevertheless, in open rural
environments, nonground samples are typically sparse; in
addition, the variation of all possible nonground classes is
unlimited. That makes it difficult to model the nonground
class, whereas, although it changes geographically and over
time, the ground class is generally less variable than random

objects. Furthermore, our objective is to build a visual model
of the ground. Therefore, it is reasonable to formulate the
problem as a distribution modeling one, where the distri-
bution to estimate is the visual appearance of the ground.

In the remainder of this section, the general ground
modeling and classification approach is introduced, while
details about the radar and the visual classifier are provided
in Sections 5 and 6, respectively.

4.1. Ground Modeling

Our basic model for ground representation is a MOG, where
each component describes a local ground component. MOG
models have been extensively used in the literature for clus-
tering, since each cluster can be easily represented in a
compact form using three main parameters: mean vector,
covariance matrix, and number of members of the cluster.
Expectation maximization (EM) is a common method to es-
timate the parameters of a MOG, however it requires a priori
knowledge of the number of components K of the Gaussian
mixture. The choice of the optimal number of Gaussian com-
ponents is a critical issue, especially for online estimation
problems, such as in terrain modeling applications. On the
one hand, a small number of components may be unable
to correctly identify nonhomogeneous ground regions; on
the other hand, a high value of K could lead to an overfit-
ting of the training set with a loss of generalization power
of the classifier. Furthermore, in autonomous exploration,
a priori knowledge of K would entail that the number of
habitats be known prior to training, which is not generally
the case.

In this work, EM and the Bayesian information crite-
rion (BIC) are used to fit the data using a MOG model,
and estimate, at the same time, the optimal number of
Gaussian components. The BIC (Schwarz, 1978) has been
widely adopted to assess the fit of a model and to compare
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competing models, based on a measure of information. The
BIC statistic is computed as

BIC = −2 · log L + f log n, (1)

where f is the number of free parameters (which, in turn,
depends on the number of clusters K and on the number of
feature variables m), L is the maximum likelihood achiev-
able by the model, and n is the sample size. Being defined
in such a way, the BIC aims to balance the increase in like-
lihood due to the use of a higher number of parameters, by
introducing a penalty term that grows as long as the number
of parameters is increased. Based on BIC, two models can
be compared for model selection purposes, with the model
having the smaller value of the BIC statistic being preferred.

In this investigation, the optimal MOG model is found,
based on a recursive procedure that starts with a single-
component assumption and iteratively applies EM with a
growing number of components up to a predefined maxi-
mum value. Then, the best fitting model is determined to
be the one that leads to the smallest value of the BIC statis-
tic. Specifically, let Xt be an n × m data table representing
a sample of xj vectors with j = 1, 2, . . . , n, each character-
ized by m traits: Xt = {x1, . . . , xn}. These vectors constitute
the training set at a given time t to construct the ground
model as a mixture of multivariate Gaussians with K com-
ponents, GK

t = {g1, g2, . . . , gK}, where each component gi ,
i = 1, 2, . . . , K , is represented by gi = (xi, Si, ni), where xi

is the mean value, Si is the covariance matrix, and ni is the
number of feature vectors belonging to component gi . To
estimate GK

t , a single Gaussian distribution is initially fit
to the data (i.e., K = 1 is assumed); then, the number of
Gaussian components is incremented one unit at a time un-
til a maximum number of components Kmax is reached. It is
worth noting that, in the proposed approach, the training
set is built upon a rolling window reflecting the appearance
of a small portion of the environment that is successively
encountered by the robot along its path. It thus represents a
continuously updated picture of the local properties of the
ground and, as such, it is reasonable to expect K to vary
in a limited range (e.g., Kmax = 5). An additional stopping
criterion is also employed based on the mixing proportions
of the components in the MOG: if the minimum mixing
proportion of a component is less than a threshold, then
iteration is stopped and only the MOGs estimated up to the
previous iteration are retained. At each iteration, the BIC
statistic associated with the model GK

t is computed. Finally,
the MOG with the smallest BIC GK∗

t , i.e., the model corre-
sponding to the highest Bayesian posterior probability, is
selected as the best fitting model according to the BIC ap-
proach. To verify whether this model actually represents
a significant improvement with respect to a model with a
lower number of Gaussian components, the absolute differ-
ence between its BIC and the BIC associated with the model
with (K∗ − 1) components is computed. Following Raftery
(1995), if this difference is greater than 10, then there is very

strong evidence in favor of the model with K∗ components
and GK∗

t is retained as the best model, otherwise the model
with a number of clusters (K∗ − 1) is preferred to reduce
complexity.

It should be noted that, in order to account for ground
changes during the vehicle travel, the EM-BIC MOG fitting
algorithm is applied on a frame-by-frame basis such that
the ground model is recomputed with the new acquired
ground-labeled observations.

4.2. Ground Classification

Given a new observation z, where z is either a radar feature
vector in the radar classifier or a visual feature vector in the
visual classifier (see Sections 5.1 and 6.1 for a description
of the radar and visual features, respectively), the classifi-
cation step is aimed at assessing whether the observation is
an instance of ground or not. A Mahalanobis distance-based
approach is adopted whereby the Mahalanobis distance and
its distribution are employed to predict if a pattern has an
extremely low probability of belonging to ground and may
be suspected to be an outlier. In detail, the algorithm pro-
ceeds as follows. First, the squared Mahalanobis distance of
the feature vector z with respect to each component of the
current ground model GK

t is computed as

d2
i = (z − xi)S−1

i (z − xi)t , (2)

where xi is the mean value and Si is the covariance matrix of
the ith component for i = 1, 2, . . . , K , K being the number
of available terrain subclasses. Then, the minimum squared
Mahalanobis distance d2

min = min{d2
1 , d2

2 , . . . , d2
K} (i.e., the

distance of z from the closest ground subclass) is found,
and is compared with a cutoff threshold for classification.

Under the assumption of normality of the feature vector
distributions, it can be shown that the squared Mahalanobis
distance is asymptotically distributed as the m degrees of
freedom chi-square distribution χ 2

m (Mardia, Kent, & Bibby,
1979), with m being the number of feature variables. Let
α denote a constant probability level: 0 < α < 1. Let χ2

m;α
denote the appropriate quantile of the distribution. Then, it
holds that

p
(
d2

min ≥ χ 2
m;α

)
= 1 − α, (3)

which means that values of d2
min greater than (or equal to)

χ 2
m;α appear with a probability equal to (1 − α). Hence, any

patch with minimum Mahalanobis distance d2
min satisfying

the inequality

d2
min ≥ χ 2

m; α (4)

may be suspected to be an outlier at significance level
(1 − α). Otherwise it will be labeled as a ground. It should
be noted that, once the significance level, i.e., the admitted
probability of classifying a patch as nonground when it is
actually a ground, has been fixed, the classification thresh-
old is set accordingly.
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Figure 3. (a) Radar image with overlaid results obtained from the radar-based classifier. Green cross: ground-labeled return. Black
dot: nonground labeled return. (b) Classification results projected over the colocated camera image.

5. RADAR CLASSIFIER

A self-trained classifier using radar features was previously
presented by the authors. Here, it is shown how the same
radar-based classifier can be considered as a part of a more
general self-learning framework for reliable ground detec-
tion. In this section, the classifier is briefly reviewed; the
reader is referred to Reina et al. (2012b) for more details.

5.1. Radar Features

The radar is assumed to be mounted on a frame attached to
the vehicle’s body and tilted forward (see Figure 1). In such
a configuration, a single sensor sweep generates a bidimen-
sional intensity graph (i.e., radar image or B-scope), as a
result of the convolution of the scene with the radar beam.
A sample radar output is shown in Figure 3(a), referring
to the scenario of Figure 3(b). The abscissas in Figure 3(a)
represent the scan angle, whereas the ordinates represent
the range measured by the sensor. The radar image can be
thought of as composed of a foreground and a background.
The background is produced by the ground echo, i.e., the
intensity return scattered back from the portion of terrain
that is illuminated by the sensor beam. Radar observations
belonging to the background show a wide pulse produced
by the high incident angle to the surface. Conversely, ob-
stacles present in the foreground appear as high-intensity
narrow pulses. It was shown that the power return of the
ground echo for a single scan angle can be expressed as a
function of the range R (Reina et al., 2011b),

Pr (R) = k
G(R, R0)2

cos γ
, (5)

where k is a constant quantity, R0 is the slant range, G is
the antenna gain (usually modeled as Gaussian), and γ is
the grazing angle, as previously explained in Figure 1. It
should be noted that the radar ground echo refers to the
intensity return scattered back from the portion of terrain
that is illuminated by the conical beam of the sensor, usually
referred to as the footprint. For our system, the footprint
length varies as a function of the scan angle between 5 and
9 m, thus limiting the radar resolution for segmentation
purposes.

By extracting and processing the portion of the radar
signal pertaining to the background, a set of radar intensity
and shape features representative of the ground class can
be obtained. To this aim, the theoretical ground model (5)
can be fitted to radar data under the assumption that a
good match between the model and the experimental data
attests to a high likelihood of ground. Conversely, a poor
goodness of fit suggests low likelihood due, for example, to
the presence of an obstacle, or highly irregular or occluded
terrain. One should note that Pr (R) is a parametric function
defined by the parameters R0 and k. k can be interpreted
as the power return at the slant range R0, and it is chosen
as the first feature defining the ground appearance. Both
parameters R0 and k can be estimated by data fitting for the
given scan angle. Output from the fitting process includes
the updated parameters R0 and k as well as an estimate of
the goodness of fit. The coefficient of efficiency was found
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Figure 4. Normalized histograms of the distribution of the radar features for a training set referring to mixed terrain (sandy
and grass). All three histograms exhibit an approximately unimodal distribution, which can be reasonably modeled with a single
Gaussian.

to be well suited for this application, and it is chosen as the
second feature of our model,

E = 1 −

Ns∑
i=1

(ti − yi)2

Ns∑
i=1

(ti − t̄)2

, (6)

ti being the data point, t̄ the mean of the observations, yi

the output from the regression model, and Ns the number
of points. In addition to k and E, a third feature is also used,
i.e., the shape factor S defined as

S =
∣∣∣∣
I0 − Iend

I0

∣∣∣∣ , (7)

where I0 and Iend are the initial and final intensity value of
the ground echo. Our hypothesis is that a normal ground
echo should have similar initial and final intensities due
to the physical interaction between the radar emission and
the ground. A high value of S indicates a discrepancy and
suggests low confidence that the signal is an actual ground
echo.

In summary, three main features define the ground
model: the intensity k associated with the slant range,
the goodness of fit E, and the shape factor S. This set of
features is used to model the ground and classify radar
returns as ground or nonground, according to the classi-
fication scheme described in Section 4. The ground class

corresponds to returns from the terrain, whereas the non-
ground class corresponds to all other returns, including sen-
sor misreading and reflections from above-ground objects
(i.e., obstacles) or from occluded areas. As an example, the
results obtained from the radar-based classifier are overlaid
over the radar and visual image of Figure 3. Ground la-
bels are denoted by green crosses, whereas black dots mark
nonground labels.

For the same scene, it is interesting to look at the dis-
tribution of the radar features used in the current ground
model, shown in Figure 4. Although multiple terrain types
(sandy+grass) are simultaneously present in the training
set, all three histograms exhibit an approximately unimodal
distribution, which can be reasonably modeled with a sin-
gle multivariate Gaussian (i.e., Kmax = 1, as explained in
Section 4.1).

5.2. Self-training Approach

As explained in Section 3, an adaptive self-taught method
is proposed that allows the ground model to be constructed
and updated online following a multiframe approach with-
out any a priori information. Specifically, at the beginning of
the robot’s operation, the training set for the radar classifier
is initialized under the assumption that the vehicle starts
from an area free of obstacles in the radar field of view, so
that the radar “looks” at ground only. Then, the ground
model is continuously updated as the vehicle moves:
new ground feature vectors labeled in the most recent
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acquisitions are incorporated, replacing an equal number
of the oldest ground instances. The size of the rolling win-
dow is kept constant. Let Zt+1 = {z1, z2, . . . , zl} denote the
set of l ground-labeled cells classified at time t + 1. Then the
training set for the next acquisition scan is obtained as

Xt+1 = {(xl+1, . . . , xn), Zt+1}. (8)

Once the radar classifier has been trained, it can predict
ground points in the subsequent scan. Radar-ground la-
beled instances are then used within the self-supervised
scheme of Figure 2 to provide training instances to the vi-
sual classifier.

6. VISUAL CLASSIFIER

A visual classifier using images produced by a monocular
camera is described. It relies on texture and color features to
describe the appearance of ground. Ground can be detected
in the entire video frame, and also at a significant distance
from the camera, thus providing long-range information.
In addition, ground subclasses can be identified for terrain
typing. The learning phase for the visual classifier is super-
vised by the radar, which provides ground labels. In this
section, first the adopted visual features are presented, and
then the radar-camera integration is described.

6.1. Visual Features

A vast body of literature exists on investigations of the use
of visual features for the task of terrain classification, using
either color, texture, or a combination of both (Permuter,
Francos, & Jermyn, 2006; Sung, Kwak, Kim, & Lyou, 2008).
Approaches using interest point descriptors (e.g., SURF)
have also been proposed in recent works (Filitchkin & Byl,
2012; Khan, Masselli, & Zell, 2012). In this research, the vi-
sual appearance of the ground is represented in terms of
color and textural information. Color data are available as
red, green, and blue (RGB) intensities. Previous research
in the literature has shown that raw RGB space can be
inadequate for classification purposes in outdoor naviga-
tion contexts due to its sensitivity to lighting variations
and nonuniform illumination (Sofman, Lin, Bagnell, Van-
dapel, & Stentz, 2006). Therefore, it is generally useful to
map the colors from the RGB space to a more suitable one.
Here, we adopt the rg chromaticity space. It consists of a
two-dimensional color space, with no intensity information
(Balkenius & Johansson, 2007). In this space, each pixel is
represented by the contribution of the red (r) and green (g)
components, which are derived from the RGB color space
as

r = R

R + G + B
, (9)

g = G

R + G + B
. (10)

Since all the components are normalized, it is also pos-
sible to compute the blue contribution, if necessary, as
b = 1 − (r + g). Although the rg chromaticity space con-
tains less information than RGB or HSV color spaces, it
has several useful properties for computer vision applica-
tions, and it has been demonstrated to perform similarly to
other more complex normalized color representations (e.g.,
c1c2c3) (Gevers, Weijer, & Stokman, 2006; Reina & Milella,
2012). The main advantage of this space is that changes in
light intensity will not change the basic color of the objects
in the scene.

Textural features account for the local spatial variation
in intensity in the image. Several texture descriptors have
been used in the literature, including Gabor filters, wavelets,
and local energy methods (Brooks & Iagnemma, 2008; Reed
& du Buf, 1993). In this work, we use an approach based
on the gray-level co-occurrence matrix (GLCM), a second-
order texture measure. Haralick, Shanmugam, and Dinstein
(1973) proposed 14 statistical features that can be extracted
from a GLCM to estimate the similarity between different
gray-level co-occurrence matrices. Among these features,
two of the most relevant are energy and contrast (Cossu,
1988). Energy measures the textural uniformity of an image
and reaches its highest value when the gray-level distri-
bution has either a constant or a periodic form. Contrast
describes the amount of local variations in an image. These
two parameters have been recognized as being highly sig-
nificant to discriminate between different textural patterns
(Baraldi & Parmiggiani, 1995). Energy and contrast were
used in our implementation for ground characterization.

In conclusion, a four-dimensional feature vector re-
sulting from the concatenation of two scalar color descrip-
tors and two scalar textural descriptors was adopted. One
should note that more complex visual descriptors can also
be used without altering the rest of the algorithm.

6.2. Radar-based Training

The radar-based classifier detects and ranges a set of points
in radar-centered coordinates, which we regard as good es-
timates of ground and we use to automatically train the
vision-based classifier. With reference to the running ex-
ample of Figure 3, radar-labeled ground points are first
projected over the camera image. Then, for each projected
point, an attention window is set. Specifically, based on the
available calibration data, interest windows are built as fol-
lows. For each labeled radar point, the corners of a squared
ground portion of 0.30 m × 0.30 m centered on that point are
projected on the visual image using the perspective trans-
formation; then, the window is defined as the bounding box
of the projected corners. Due to the perspective effect, the
bounding boxes result in rectangular windows of varying
size of about 35 × 7 pixels (see Figure 5). Successively, the
image patches associated with the windows are processed
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Figure 5. Projections of radar-labeled ground returns in the
colocated camera image with a close-up of some attention win-
dows. Visual features extracted from these windows are in-
cluded in the training set to build a visual model of the ground.

to extract visual features and build a training set for the con-
cept of ground. It is worth noting that, in order to update
the ground class for visual scene classification during the
vehicle motion, the visual ground model is continuously
updated, always using the ground feature vectors extracted
by the most recent radar predictions.

Once the classifier has been trained, the vision algo-
rithm can be extended to the entire field of view of the cam-
era. A block-based segmentation method is used to reduce
the segmentation processing time at the cost of a lower res-
olution. Specifically, the image is divided in small patches,
and for each subimage the feature vector is computed and
compared with the current ground model for classification,
as explained in Section 4.2.

7. RESULTS

The proposed approach for ground segmentation comprises
two main steps: ground detection from radar data and self-
supervised visual classification based on radar labeling.
The performance of the radar-based classifier in detecting
ground was previously evaluated in Reina et al. (2012b)
through extensive field testing. The combined radar-vision
system is demonstrated in the field in this section. First, the
experimental setup is described in Section 7.1. Then, the
influence of the system’s parameters is evaluated through
a sensitivity analysis in Section 7.2. The proposed adap-
tive strategy is compared to a static approach and a batch
training approach in Sections 7.3 and 7.4, respectively. Fi-
nally, the overall performance of the system in detecting
and mapping ground is evaluated in Section 7.5.

Figure 6. The CORD UGV used in this research along with its
sensor suite.

Table I. Specifications of the custom-built radar system.

Max.
Range

Raw
range

resolution
Horizontal

FOV
Instantaneous

FOV

Scan
angle
Rate

Radar 120 m 0.25 m 360 deg 3 × 3 deg 3.0 Hz

Table II. Specifications of the camera.

Image Pixel Dimensions Resolution Frame rate

Camera 1360 × 1024 72 × 72 ppi 10 fps

7.1. Experimental Setup

Experimental validation was performed using the CAS
Outdoor Research Demonstrator (CORD), shown in
Figure 6, operating in a rural environment at the Uni-
versity of Sydney’s test facility near Marulan, NSW, Aus-
tralia. The CORD test bed is an eight-wheel skid-steering
all-terrain unmanned vehicle, and its onboard sensor suite
includes a 95 GHz frequency-modulated continuous-wave
(FMCW) radar, custom-built at the Australian Center for
Field Robotics (ACFR) for environment imaging (Brooker
et al., 2006), and a Prosilica Gigabit Ethernet camera, point-
ing down (a few degrees of pitch). The main technical prop-
erties of the two sensors are illustrated in Tables I and II
for the radar and the camera, respectively. The robot was
also equipped with other sensors, including four 2D SICK
laser range scanners, a thermal infrared camera, and a RTK
DGPS/INS unit providing accurate position and tilt estima-
tion of the vehicle.
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Figure 7. Sample image acquired during field validation: (a) radar-labeled ground points projected on the colocated visual image
(green crosses); (b) segmented ground (green pixels); (c) identification of two ground subclasses. In (c), the two terrain types are
marked using the average RGB colors of the clusterized training patterns. Note that the blue channel was removed to improve
visualization.

For the system to work properly, accurate calibration
and synchronization of the sensors has to be ensured, espe-
cially to guarantee appropriate reprojection of radar-labeled
points on the visual image. Errors in calibration or synchro-
nization may cause incoherency between the data acquired
by the two sensors and consequent failure in any stage of the
classification system. For instance, points labeled as ground
by the radar may be wrongly projected on nonground re-
gions of the image, thus causing an incorrect training of the
visual ground model. For the experimental setup adopted
in this work, accurate calibration information is available,
including both intrinsic and extrinsic parameters of the cam-
era. Specifically, extrinsic parameters define the relative po-
sition of the camera reference frame with respect to the
radar reference frame, while intrinsic parameters are used
to transform metric point coordinates into pixel coordinates.
In addition, the sensors are time-synchronized. Detailed in-
formation concerning calibration and synchronization can
be found in Peynot, Scheding, and Terho (2010).

During the experiments, the CORD vehicle was re-
motely driven to follow different paths with an average
travel speed of about 0.5 m/s and a maximum speed
of 1.5 m/s. Visual and radar images were collected and
stored for processing offline. In each experiment, the ve-
hicle started its operations from an area that was clear of
obstacles, in order to initialize the radar ground model.

7.2. Parameter Analysis

The influence of two main parameters, i.e., the number of
Gaussian components for MOG fitting and the cutoff thresh-
old, on the outcome of the visual classifier is analyzed for a
test case.

7.2.1. Influence of the Number of Gaussian Components

Due to the nature of the adopted visual features (i.e., tex-
ture and color features), a number of Gaussian components
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Figure 8. Normalized histograms of the distribution of the visual features for a ground training set including samples of sand
and grass. The MOG fit line is displayed for each feature variable, showing that the training set can be reasonably modeled as a
multivariate MOG with K = 2 components.

K > 1 is generally expected in the presence of different ter-
rain types. Hereafter, the influence of the number of Gaus-
sian components on the outcome of the visual classifier
is evaluated for the sample scenario shown in Figure 7.
Hand-labeling of the original visual image was performed
to get a ground-truth for reference. In this test case, the
terrain was mainly constituted by grass and sandy soil. In
Figure 7(a), the radar-labeled ground points are projected
over the original visual image and denoted by green crosses,
providing training examples to the visual classifier. The EM-
BIC algorithm returned a number of Gaussian components
K = 2. The classification results produced by the visual clas-
sifier for the entire video frame using a cutoff threshold
α = 0.999 are shown in Figures 7(b) and 7(c). Specifically, in
Figure 7(b), pixels associated with ground-labeled patches
are marked in green, whereas the two terrain subclasses de-
tected by the system are shown as dark green and brown
pixels in Figure 7(c). It should be noted that these two col-
ors have been obtained as a result of averaging RGB colors
of the clusterized training samples, thus showing a coher-
ent association between each ground class and its expected
color appearance.

The presence of two main ground subclasses is also
confirmed when considering the distribution of the feature
space for the current (local) training set of the visual ground
model, as shown in Figure 8. An approximately bimodal
trend is visible for the color feature variables. Although the

system detects “ground” as the superclass and is able to
distinguish the different ground subclasses based on MOG,
semantic classification of the ground subclasses (e.g. “grass”
and “sandy-soil”) is not explicitly addressed in this paper.

The influence of the number of MOG components on
the performance of the visual classifier for this scene is high-
lighted in the graph of Figure 9. Results are presented in
terms of false positive and true positive rates obtained us-
ing EM with a given K ranging from 1 to 5, and a fixed
cutoff threshold of α = 0.999. The tradeoff between small
and large K is clearly visible. Using a number of clusters
of K = 2 as returned by EM-BIC leads to a good tradeoff
between false positives and true positives, with the addi-
tional advantage of not requiring a priori knowledge of the
number of clusters in the training set.

7.2.2. Balancing Ground and Nonground Finding: Impact
of the Cutoff Threshold

To classify a visual patch as ground or nonground, the Ma-
halanobis distance between its associated feature vector and
the closest component of the current ground model is com-
pared with a critical value, established as χ2

m; α [see Eq. (4) in
Section 4.2]. Changing this threshold will result in a varia-
tion of the classification performance. In Figure 10, the im-
pact of the cutoff on the classification performance is shown
for the running example of Figure 7 using the ground model
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Figure 9. The impact of the number of components (K) on
the classification performance for the sample case of Figure 7.
Increasing K leads to a tighter fit of the ground model to the
training data, which results in a reduction of both false and true
positives.

Figure 10. The impact of the cutoff on classification perfor-
mance for typical significance levels of 10%, 5%, 1%, and 0.1%.
Increasing the parameter α while keeping other parameters
constant increases the overall number of cells identified as
ground.

returned by EM-BIC, and varying the cutoff threshold. It can
be observed that the choice of the optimal cutoff threshold
results from the balance of ground and nonground finding,
i.e., increasing the cutoff while keeping other parameters
constant, increases the overall number of pixels identified
as ground, thus leading to an increment of both the true pos-
itive and the false positive rate. In general, a good cut point
is one that produces a large true positive rate and a low false
positive rate. A possible solution for optimal threshold se-

lection is that of building a receiver operating characteristic
(ROC) curve of the classifier and choosing the threshold that
maximizes the difference between the true positive and the
false positive rate. A discussion about this approach can be
found in Milella et al. (2011). However, a ROC-based heuris-
tic is not a feasible option for online implementation. In
the proposed framework, the sensitivity threshold is given
once the significance level (1 − α) has been set according to
the goal and specifications of the robot’s mission (refer to
Section 4.2).

7.3. Ground Model Update

In long-range and long-duration navigation, a static ground
model will lead to failure due to terrain and environment
variation. Here, an adaptive approach is proposed that al-
lows the visual ground model to be continuously updated
during robot operations, thus ensuring robustness to envi-
ronmental changes. To demonstrate the advantage of on-
line learning with respect to a system trained once at the
beginning of the robot operation (offline learning), the per-
formance of the classifier using a MOG built and updated
online is compared with the results obtained using a MOG
trained based only on radar data captured in the first frames
and never updated.

In the following, two sequences are analyzed, one ac-
quired in a relatively open area, at daytime, and the other
one acquired in the evening, just before the sunset, in an
area adjacent to a small eucalyptus forest.

7.3.1. Open Area

A sequence acquired at daytime, in an open area with rel-
atively even ground, is considered. Some obstacles, includ-
ing a fence, a metallic shed, and static cars, were present.
The vehicle was driven to follow an approximately closed-
loop path, where the ground changed from mostly sandy to
mostly grass to mostly sandy again. Overall, 868 radar im-
ages and corresponding visual images were stored. Every
tenth image was hand-labeled to build ground truth, result-
ing in 86 labeled frames. For these frames, Figures 11 and
12 compare the results obtained with and without online
ground model update, showing, respectively, some salient
frames of the sequence and the classification accuracy at
each testing image, obtained using a threshold α = 0.999.
Specifically, in Figure 11 for each sample image, the first
row shows the radar-labeled ground points in the current
scan (green crosses) projected on the colocated visual image,
while the second and the third rows display the superclass
of ground (green colored pixels) as detected by the visual
classifier, using, respectively, the offline learning approach
and the online learning system. In Figure 12, the solid line
with dots refers to the online learning algorithm, while re-
sults for the offline learning approach are shown by a solid
line with crosses. From these figures, it can be observed that
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Figure 11. Sample images comparing online and offline learning. First row: radar-based ground labels (green crosses); second
row: output of the offline classifier; third row: results of a classifier using the online strategy. Note that, in these images, only the
superclass of ground is shown using green pixels. The scenes include objects characterized by vertical structures with different
size and distance from the sensors (e.g., poles). When the distance is relatively short and the size of the object is big enough for
the given camera resolution, objects are properly detected, as shown, for example, in (e)–(g). Conversely, if an object, e.g., a thin
pole, appears too small in the image due to excessive distance from the sensor or to small dimensions, as in (b)–(d), it is likely to
be neglected, also due to the use of a block-based segmentation approach.
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Figure 12. Classification accuracy for a sequence acquired in the field. Results obtained using the online learning strategy (solid
line with dots) are compared with those obtained by training the classifier once at the beginning of the robot operation (solid line
with crosses).

Figure 13. Adaptation to different terrain types. Initially, the ground model includes instances of grass only and sand is not
recognized as ground, (a)–(c). As soon as enough instances of sand are added to the training rolling window, sand is segmented as
ground, (b)–(d). In (a) and (b), green crosses denote radar-labeled ground points in the current scans. In (c) and (d), image pixels
belonging to ground are marked using the average RGB color of the respective terrain type (the blue channel was removed to
improve visualization).

in the first frames (approximately up to frame 90), both the
online and the offline algorithm performed well, since the
ground appearance did not vary significantly. Successively,
the offline algorithm degraded, until the vehicle returned to
its starting position (approximately at frame 800).

The ability of the online system to recover from poor
classification performance can be observed in Figure 13
for the frames 382–392. Radar-based training instances of
ground detected in the current scans are shown as green
crosses in Figures 13(a) and 13(b) for the two frames, while
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Table III. Performance of the radar-supervised visual classi-
fier in the Open Area: classification accuracy using online learn-
ing (i.e., with ground model update) versus offline learning
(i.e., without ground model update).

Online learning Offline learning

Mean accuracy (%) 84.07 70.81
St. dev. of accuracy (%) 7.80 11.34
Mean F1 score (%) 85.13 67.71
St. dev. of F1 score (%) 8.96 16.91

the results of visual classification are shown in Figures 13(c)
and 13(d). In this period, the vehicle performed a left-hand
turning manoeuver. Due to the narrow radar field of view,
initially the ground model included instances of grass only;
therefore, sand was not recognized as ground by the vi-
sual classifier [see Figures 13(a)–13(c)]. Correspondingly,
a decrement in the detection accuracy can be observed in
Figure 12. This highlights an intrinsic drawback of the on-
line learning approach, as a ground portion would not be

recognized as ground until samples of it are included in the
ground model. On the other hand, the online learning algo-
rithm rapidly adapted as soon as enough instances of sand
were added to the training rolling window, so that also sand
was segmented as ground [see Figures 13(b)–13(d)], with a
consequent increment of the detection accuracy. The numer-
ical results summarizing the classification performance for
the sequence using the online approach compared to those
of the offline learning system are reported in Table III in
terms of accuracy and F1 score. Overall, the average accu-
racy resulted in 70.81% with a standard deviation of 11.34%
for the offline learning system, while the online learning
demonstrated better performance with an average accuracy
and standard deviation of 84.07% and 7.80%, respectively.

7.3.2. Eucalyptus Forest Area

The capability of the online learning approach to deal
with abrupt variations in the illumination conditions is
demonstrated in Figures 14 and 15 for a sequence acquired
in the evening, just before the sunset, in an area adjacent to

Figure 14. Adaptation to lighting variations and shadows: sample images comparing online and offline learning. First row: radar-
based ground labels (green crosses); second row: output of the offline classifier; third row: results of a classifier using the online
strategy. Note that, in these images, only the superclass of ground is shown using green pixels.
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Figure 15. Classification accuracy for a sequence acquired in the field in the presence of heavy shadowing. Results obtained using
the online learning strategy (black line with dots) are compared with those obtained by training the classifier once at the beginning
of the robot operation (black line with crosses), as well as with the performance of a MOG classifier trained in batch mode (gray
line with square markers).

Table IV. Performance of the radar-supervised visual classi-
fier for the sequence acquired at sunset in the Eucalyptus Area.
First column: results obtained using online learning (i.e., with
ground model update). Second column: results of the offline
learning classifier (i.e., trained once at the beginning of the se-
quence). Third column: performance of the batch trained clas-
sifier. Fourth column: performance of the manually tuned clas-
sifier.

Online
learning

Offline
learning

Batch
training
(prior

dataset)

Manually
tuned

classifier
(prior

dataset)

Mean accuracy (%) 78.90 64.21 70.80 74.89
St. dev. of accuracy (%) 5.53 12.96 6.10 7.05

Mean F1 score (%) 80.22 60.38 70.30 75.13
St. dev. of F1 score (%) 7.08 19.76 8.84 11.08

a small eucalyptus forest. Due to the presence of high trees,
and since the experiment was performed before dusk, the
environment encountered by the vehicle was characterized
by long shadows and low-lighting conditions. These spe-
cific aspects make it suitable for this analysis. The sequence
includes 61 radar scans and corresponding visual images.
Some key frames are shown in Figure 14 comparing on-
line and offline learning results. It can be noticed that the
online learning approach allows for a rapid adaptation to
the changing appearance of the ground due to illumination
variations. Figure 15 shows the classification accuracy ob-
tained by using the online learning approach, compared to
the classification accuracy of the fixed classifier (i.e., trained
only once at the beginning of the sequence). Again, the solid
line with dots refers to the online learning algorithm, while
the solid line with crosses denotes the results of the offline

learning approach. The accuracy of the fixed classifier de-
teriorates steadily. In contrast, the accuracy of the online
learning system remains relatively high, demonstrating its
capability of adapting to the changing environment. Results
are presented in the first and second columns of Table IV in
terms of accuracy and F1 score. Overall, the online learning
approach resulted in an average accuracy of 78.90% with a
standard deviation of 5.53%, while using the offline learn-
ing system yielded a lower average accuracy of 64.21% with
a standard deviation of 12.96% was obtained.

As a final remark, it should be noted that since many
false positives arise from an erroneous classification of the
pixels belonging to the upper parts of the trees (see the
examples of Figure 14), the system’s performance may be
improved by adopting an algorithm for horizon detection
and sky removal, as explained, for example, in Dahlkamp
et al. (2006).

7.4. Online Learning Versus Batch Training and
Manual Tuning

Supervised classification techniques rely on the availabil-
ity of reference samples to be used in the training phase
of the classification algorithm. Reliability of the training set
depends on both the quantity and quality of the available
samples. In many autonomous vehicle applications, such
as in exploration of unknown environments, the use of a
batch trained classifier is not a viable option, as the train-
ing set is typically not available a priori. On the other hand,
onsite generation of the training set would entail a signifi-
cant delay between the time training images were collected
and the time the classifier could be implemented. What
would typically happen is that the training set would be
collected and labeled at a certain time and spatial location,
and it would be applied successively for prediction with
a delay of hours or days, without any possibility of online
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Figure 16. Typical classification results obtained from the radar-vision combined system. Left side: green crosses mark radar-
labeled training examples detected in the current scan. Right side: green pixels denote the ground superclass segmented by the
visual classifier.

Table V. Performance of the radar-supervised visual classifier
on 105 images taken from different datasets.

Mean precision (%) 93.50
St. dev. of precision (%) 6.98

Mean recall (%) 77.87
St. dev. of recall (%) 13.39

Mean accuracy (%) 83.47
St. dev. of accuracy (%) 8.20

Mean F1 score (%) 84.18

St. dev. of F1 score (%) 9.65

update during the vehicle travel to deal with environmental
changes. Here, for the purpose of comparison, the results of
the online learning approach for the sequence acquired in
the eucalyptus area are compared with the results obtained
using a MOG-based classifier trained in batch mode using
a dataset previously collected in a similar context. In the
batch training experiment, first the radar classifier was run
on the whole training sequence in order to build a MOG
ground model. Afterward, this model was used to classify
the entire scene in all frames of the test sequence. Overall,
24,644 radar-labeled ground samples, acquired along a path
of about 150 m, were used for training. The classification ac-
curacy of the batch trained classifier for each frame of the

Journal of Field Robotics DOI 10.1002/rob



38 • Journal of Field Robotics—2015

Figure 17. (a) Radar-generated map, shown as raw data obtained from the classifier with associated RGB data obtained from the
visual classifier. (b) Same radar-vision data after Delaunay triangulation.

sequence is shown in Figure 15 as a gray line with square
markers. It can be seen that accuracy is generally lower than
the online learning approach with a mean value of 70.80%
and a standard deviation of 6.10% (refer to the third column
of Table IV for numerical results).

For the same sequence, it is also interesting to compare
the proposed self-learning approach with that previously
presented by the authors [see Milella, Reina, Underwood,
& Douillard (2014)], where parameters were hand-tuned
for both the radar and the visual classifier. In detail, the
radar module was based on a set of “expert” classification
rules with manually tuned thresholds [please refer to Ta-
ble I in Reina et al. (2011a)], whereas the visual classifier
used a single multivariate Gaussian to model the ground.
Results are reported in the fourth column of Table IV. One
should note that the online learning approach outperforms
the hand-tuned one (note that the tuning was based on a
prior dataset) with the further advantage of being auto-
matic at any stage from training to prediction without any
a priori information.

7.5. Ground Detection and Mapping

An overall assessment of the system’s performance was per-
formed using a subset of salient images (sb = 105) taken
from different data sets. Some typical results obtained from
the classifier are shown in Figure 16. Images on the left
side show the original image overlaid with the training in-
stances provided by the radar-based classifier for the cur-
rent scan, while the results of the visual classifier are shown
on the right side, where pixels associated with the ground
superclass are marked in green. The numerical results sum-
marizing the classification performance are presented in
Table V as average value and statistical spread. Specifically,
the precision resulted in 93.50% with a standard deviation
of 6.98%, the recall was 77.87% with a standard deviation

of 13.39%, the accuracy resulted in 83.47% with a standard
deviation of 8.20%, and the F1 score was 84.18% with a
standard deviation of 9.65%. Finally, it should be recalled
from Section 3 that when a single radar observation, i, is
successfully labeled as ground, an estimate of its range dis-
tance R0,i is also returned by the fitting process. When com-
bined with the localization estimation of the vehicle, this
provides a 3D georeferenced position for the labeled point.
This aspect highlights an additional advantage of combin-
ing radar with vision, that is, the generation of “rich” 3D
data, where radar provides range information and vision
color-based subground separation toward an augmented
map of the environment. For a complete overview, the re-
sults obtained from the same sequence analyzed in Section
7.3.1 are shown in Figure 17(a). The ground labeled obser-
vations are denoted by the average RGB color associated
with the detected Gaussian component. The path followed
by the robot is also shown by a solid black line. Figure 17(b)
depicts the same data after a post-processing step apply-
ing a Delaunay triangulation. This figure demonstrates that
the system is capable of providing a clear understanding of
the environment, suitable for robotic applications including
scene interpretation and autonomous navigation.

8. CONCLUSIONS

In this paper, a unified self-learning framework for online
ground detection in outdoor environments was proposed.
It can be applied to a single sensor or to combine multiple
sensors. Within this framework, a radar-supervised visual
classifier was developed that allows an autonomous vehicle,
operating in natural terrains, to construct online a visual
model of the ground and perform ground segmentation.

The proposed system presents two main characteris-
tics of interest: 1) it is fully self-supervised, as both the
radar module and the visual module take advantage of an
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automatic training procedure, thus avoiding time-
consuming manual labeling; 2) it uses an online learning
approach, i.e., the ground model is learned and updated in
the field, which may be useful for long-range navigation in
unknown environments.

Experimental results obtained with an unmanned ve-
hicle operating in a rural environment were presented,
demonstrating the capability of the system to adapt to en-
vironmental changes, such as variations in the illumination
conditions and of the ground appearance, after an automatic
initialization phase, with no need of human supervision for
training.

Self-learning systems may be the only option when no
prior datasets are available for training, and wherever the
use of a static ground model would rapidly lead to poor
classification outcome due to highly variable environmen-
tal conditions. Nevertheless, the use of a completely self-
supervised procedure brings intrinsic limitations as well.
First, for the system to work properly, the two sensors have
to be accurately calibrated and synchronized in order to
have a coherent data association, which is a prerequisite
for correct data fusion. Furthermore, the overall accuracy of
the classifier depends on both the ability of the supervising
module to produce a reliable training set, and on the robust-
ness of the visual classifier; therefore, the overall system
performance is affected by error propagation. With respect
to a batch trained classifier, whereby all training examples
are simultaneously available, incremental learning systems
have to learn sufficient information to accommodate new
classes that may be introduced with new data before per-
forming proper scene recognition. For instance, in the spe-
cific case of ground segmentation, parts of the ground that
have not yet been included in the training set would not be
properly recognized as ground and would be erroneously
labeled as obstacles. This issue is particularly critical for the
sensor configuration adopted in this research, where the su-
pervising sensor (i.e., the radar) has a field of view much
narrower than the supervised sensor (i.e., the camera), so
that the area where the training samples are collected cov-
ers a small portion of the environment, while classification
is performed on the entire video frame. On the other hand,
the system may suffer from forgetting previously acquired
knowledge. In the proposed framework, this problem may
be partly mitigated by setting an appropriate size of the
training rolling window; however, implementation of an ef-
ficient strategy to preserve previously acquired knowledge
would be beneficial and will be part of further investigation
by the authors. Future work will also include experimental
validation in the presence of hills, ditches, trees, and vege-
tation, which make ground estimation challenging, as well
as in cluttered urban settings. This will require specific re-
search on more complex visual features to better deal with
the underlying structures of ground and obstacles. Another
focus of the research will address the analysis of the system
performance under failure conditions of one sensor (e.g.,

when the radar is affected by specularity and reflection, or
the camera fails due to visual obscurants).
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