
Vehicle System Dynamics, 2015
Vol. 53, No. 4, 568–586, http://dx.doi.org/10.1080/00423114.2015.1008017

Tyre pressure monitoring using a dynamical model-based
estimator

Giulio Reinaa∗, Angelo Gentileb and Arcangelo Messinaa

aDipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Arnesano, 73100 Lecce,
Italy; bDipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia

128, 70125 Bari, Italy

(Received 31 October 2014; accepted 10 January 2015 )

In the last few years, various control systems have been investigated in the automotive field with the
aim of increasing the level of safety and stability, avoid roll-over, and customise handling characteris-
tics. One critical issue connected with their integration is the lack of state and parameter information.
As an example, vehicle handling depends to a large extent on tyre inflation pressure. When infla-
tion pressure drops, handling and comfort performance generally deteriorate. In addition, it results
in an increase in fuel consumption and in a decrease in lifetime. Therefore, it is important to keep
tyres within the normal inflation pressure range. This paper introduces a model-based approach to
estimate online tyre inflation pressure. First, basic vertical dynamic modelling of the vehicle is dis-
cussed. Then, a parameter estimation framework for dynamic analysis is presented. Several important
vehicle parameters including tyre inflation pressure can be estimated using the estimated states. This
method aims to work during normal driving using information from standard sensors only. On the
one hand, the driver is informed about the inflation pressure and he is warned for sudden changes.
On the other hand, accurate estimation of the vehicle states is available as possible input to onboard
control systems.
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1. Introduction

Although new steering and braking actuator designs provide opportunities to shape vehicle
dynamics through active control, the primary challenge in the development of vehicle control
systems remains the lack of necessary feedback. In this respect, the concept of virtual sensor
has given rise to new interest in the automotive field. The basic idea is that of inferring a
physical quantity that is not directly measured from existing sensors. Virtual sensing avoids
expensive sensors or to compute ‘abstract’ quantities where feasible sensors do not exist. One
notable example is tyre inflation pressure, whose importance for riding comfort and handling
is well known. As a matter of fact, proper tyre inflation pressure improves handling, com-
fort, fuel economy and tyre life, and reduces braking distance. Nevertheless, approximately
75% of all automobiles operate with at least one underinflated tyre.[1] In a 2012 report, the
National Highway Transport Safety Authority (NHTSA) of the USA states that tyre-related
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issues contribute to nearly 200,000 accidents per year.[2] Therefore, the availability of a tyre
pressure monitoring system (TPMS) may avoid severe accidents and lead to both economical
and environmental benefits. In 2000, NHTSA did start to investigate the implementation of
a pressure drop warning system on vehicles. As a consequence since 2008, all new passen-
ger cars and trucks in the USA are required to have tyre pressure monitoring systems.[3] A
TPMS is a driver-assist system that warns the driver when the tyre pressure is below or above
the prescribed limits. There are two ways of monitoring the tyre pressure.[4] One way is to
mount a pressure sensor on the rim on each tyre and transfer the sensor value to a central unit
via a communication-link (usually a radio-link). This is called direct tyre pressure monitoring
and it is adopted in the majority of the systems available today on the market for its better
accuracy. However, there are also some disadvantages connected with direct sensing. One
issue is the increased cost of the system not only for the extra hardware required (that gen-
erally consists of pressure sensor, analog-digital converter, microcontroller, radio frequency,
battery and battery management system, housing, etc.), but also for the car makers’ cost of
assembling the sensor inside the tyre. Besides the cost, direct TPMSs are powered by bat-
teries that limit their useful life and impose the use of a number of low-power techniques
engineered to help extend their life beyond 10-year requirements (e.g. by programming the
system to not transmit information when the car is stationary). Another issue is that direct
TPMS monitors are generally integrated with the valve stem. Thus, any damage to the fragile
valve stem (even during normal workshop maintenance) can easily make the whole assembly
unusable. The other alternative, called indirect tyre pressure monitoring, uses existing sensors
(different from direct pressure sensors) and software algorithms. Indirect systems represent
a promising solution in terms of cost-effectiveness (no extra hardware), and most of the cur-
rent research focuses on their development, as reflected by more than 100 existing patents.
However, indirect methods are generally regarded as less accurate and reliable than direct
monitors, thus making their practical application still limited, as explained later.

This paper presents an indirect approach to estimate tyre inflation pressure during normal
driving. A model-based estimator is presented, which is designed to work with errors in vari-
ables and simultaneously slow and fast parameter drifts. Virtual sensing explores correlations
between different variables using physical relations. In the context outlined in this research,
a vertical vehicle dynamic model is used to build a Kalman filter and infer estimation of
tyre stiffness through a recursive least-square approach. It is known that variation of rolling
dynamic stiffness with inflation pressure can be reasonably assumed linear, as explained for
example in Section 1.6 of Wong.[5] Typically, a reduction of 25% in the inflation pressure of
radial tyres results in a corresponding drop of 35–40% of tyre stiffness. Studies also show that
the dynamic stiffness decreases sharply as soon as the tyre starts rolling. However, beyond a
speed of approximately 10 km/h, the influence of velocity becomes less important.[6] There-
fore, an indirect measurement of inflation pressure can be drawn by tyre stiffness estimation,
as explained throughout the paper.

The manuscript is organised as follows. Section 2 surveys related research pointing out
the novel contributions of the proposed approach. In Section 3, basic concepts of vertical
vehicle dynamics are recalled that serve as a basis for the model-based observer developed
in Section 4. However, state estimation may lead to poor results when model parameters
are subject to temporal change or are not known a priori, as outlined in Section 4.1, for the
specific case of tyre stiffness variation. To fix this issue, in Section 5 a parameter estimation
scheme is proposed that recursively updates tyre stiffness providing flexibility to the observer.
In turn, the availability of a tracking system of the tyre properties may be of great value for
the development of warning and safety systems. The technique is studied in a sequence of
simulations, as detailed in Section 6, attesting to the feasibility of the proposed approach.
Relevant conclusions are drawn in the final Section 6.
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2. Related works

Tyre parameter estimation is required to reduce the cost of direct TPMSs and to overcome the
shortcomings of indirect TPMSs. Sensor industries are interested in producing cost-effective
solutions. Although promising theoretical and practical results have been obtained from indi-
rect TPMSs, only a few examples have been turned into commercial products.[7] There are
various methods proposed for indirect TPMS. One solution is vibration analysis using the fact
that the rubber in the tyre reacts like a spring when excited by road unevenness. The wheel
vibration can be measured either by the tyre speed or through an accelerometer. The vibration
analysis can be performed by fast Fourier transform-based methods or by parametric meth-
ods (using an auto-regressive model).[8] The idea is to monitor the resonant frequency, which
is correlated with tyre pressure.[9,10] In [11], online model-based observers and data-based
signal processing using power spectral methodologies are proposed to identify changes in
vehicle tyre/suspension parameters (including inflation pressure) by using an accelerometer
mounted on the wheel hub in conjunction with a wheel rotation speed sensor. However, there
may be insufficient excitation on smooth roads to yield good data using vibration-based anal-
ysis. Additionally, there is still significant imprecision with these approaches and potentially
anomalous readings may yield insufficient information to form a conclusion. Another solution
is based on wheel radius analysis using the fact that the effective rolling radius of the wheel
decreases if tyre loses pressure. Tyre pressure difference results in a measurable differential
speed of the wheels and is analysed accordingly. By comparing the angular velocity of the
wheels, it is possible to detect if one wheel is faster than the others due to underinflation.[12]
A pressure drop of approximately 30% typically produces an increase in wheel rotational
speed of 0.2–0.5%. The system is able to detect pressure losses of more than 30% relative
to normal pressure with a detection time of about 3 min, and about 1 min for a 50% pressure
drop. Thus, this approach generally suffers from possible slow warning times and may be
ineffective for small pressure losses (less than 30%). It should be emphasised that it is more
a convenience system than a proper safety system. As an additional inherit disadvantage, this
approach cannot detect equal pressure losses on the same axes or side of the vehicle. The
system also needs to be calibrated frequently, which could be difficult for end users.

Vibration-based and wheel velocity-based methods show different properties in terms of
sensitivity to varying velocity and ability to detect pressure changes. Typically, wheel radius
analysis is more sensitive to velocity, but on the other hand it responds faster to pressure
changes. In contrast, vibration analysis is more sensitive to varying road conditions, but is
insensitive to travel speed. As an alternative to vibration and wheel radius analysis, it is pos-
sible to consider other factors that affect tyre inflation pressure, including vertical force and
vertical deflection.[13] Hybrid solutions (i.e. combining direct and indirect methods) have
also been studied. As an example, in [14], a method to estimate tyre load is proposed using a
Kalman filter that receives as inputs the chassis vertical acceleration and the wheel hub verti-
cal acceleration, whereas tyre stiffness is measured from an existing pressure sensor mounted
inside the tyre. Another solution is to adopt virtual sensing to infer a desired variable from
available sensory data. For this aim, model-based estimators have been proposed using either
longitudinal or lateral vehicle dynamics. As suggested in [15], under-inflation can be esti-
mated by comparing the driven and non-driven wheels, using a tyre/road friction model.[16]
In the same paper, lateral dynamics is also used for pressure detection in conjunction with a
rate gyroscope.

Using state observers, key vehicle parameters can be estimated, including tyre cornering
stiffness,[17] vehicle slip angle,[18] understeer gradient, yaw moment of inertia, roll stiffness,
and roll damping coefficient.[19] Least-squares and total least-squares methods have also
been used to measure cornering stiffness and weight distribution.[20]
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In this work, tyre inflation pressure is estimated through an identification technique, which
relies on tyre stiffness variation with respect to inflation pressure. An adaptive observer is
presented based on the vertical dynamic model of the vehicle, which represents a novel con-
tribution to the literature. The use of a recursive least-squares (RLS) module that runs in
parallel to the observer to update tyre stiffness (and indirectly inflation pressure) is also a
novel contribution. In addition, by simple modification (i.e. by adding a forgetting factor),
the basic RLS algorithm can be modified in order to track time-varying dynamics.

3. Vehicle model

The vertical motion of a vehicle, caused by road irregularities and controlled by suspen-
sion characteristics, is important in vehicle design, as it directly affects comfort and handling
properties. The study of vehicle dynamics should ideally consider the pitch and roll motions
of the vehicle as well as the vertical (heave) motion. However, it can be shown that the
coupling between the pitch and roll and heave motions is not significant for typical passenger
vehicles,[21] and a so-called ‘quarter-car’ model can be considered, as illustrated in Figure 1.
A two degree-of-freedom (2DOF) quarter-car (QC) model considers both the vehicle sprung
mass, mb, as well as the unsprung mass, mw, associated with the tyre–axle assembly. Their
motion in the vertical direction can be described by two coordinates, zb and zw, with origins at
the static equilibrium positions of the sprung and unsprung mass, respectively. A passive sus-
pension is assumed, where ks is the stiffness of the suspension spring, and cs is the damping
coefficient of the shock absorber. The vertical tyre stiffness is kw, whereas the tyre damping

Figure 1. Quarter-car model.
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can typically be neglected. The equations of motion for the QC model are given by

mbz̈b = −ks(zb − zw) − cs(żb − żw), (1)

mwz̈w = ks(zb − zw) + cs(żb − żw) − kw(zw − zd), (2)

where zd is the elevation of the road profile. By choosing the following variables as the states
of the system:

x1 = zb − zw,

x2 = żb,

x3 = zw − zd,

x4 = żw,

(3)

it is possible to derive the equations of motion in standard state-variable form:
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where żd represents the vertical velocity of the tyre at the ground contact point, that is, the
disturbance input coming from the road, and hence u = żd. In a compact matrix form, the
equations of motion can be written as

ẋ = A(t)x + Bu(t), (5)

where the state and disturbance input matrices are
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Note that time variability is allowed in the parameter kw(t), that is, tyre stiffness, that can
be directly related with changes in the inflation pressure. The method proposed in this paper
for indirect tyre pressure monitoring is based on the use of two accelerometers measuring
the acceleration of the sprung and unsprung mass, respectively. Assuming that sprung mass
acceleration can be obtained via the ESP system of the car, this configuration may result in a
significant cost reduction (e.g. half of the cost of direct methods considering that the current
prize of most OEM pressure sensors is of $90–140).
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The measurement system can be described by the following differential equations:

z̈b = − ks

mb
(zb − zw) − cs

mb
(żb − żw),

z̈w = ks

mw
(zb − zw) + cs

mw
(żb − żw) − kw

mw
(zw − zd).

(7)

If the measurement vector z is introduced

z =
[

z̈b

z̈w

]
(8)

by considering the state vector expressed by Equations (3), Equation (7) can be written in the
following compact form:

z(t) = H(t)x, (9)

where the measurement matrix is given by
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In summary, Equations (5) and (9) can serve as the basis for linear estimation methods. In the
context of this research, Kalman filtering will be adopted, as explained later in the paper.

4. Vehicle estimation

In many mechanical systems, it is often difficult to measure all states describing the system’s
dynamic behaviour. In addition, some of the model parameters may not be known a priori
or they are subject to temporal changes. In principle, it may be useful to save resources if
state/parameter estimation may be obtained by derivation using other available sensor data.
For example, in the last few years new safety control systems have been increasingly intro-
duced in the automotive field based on the use of a massive use of electronics. However,
a significant cost reduction may be obtained by appropriately designing a minimum set of
physical sensors that ensure the correct control action keeping, at the same time, good per-
formance and robustness. On the other hand, in most feedback control systems, the control
action depends on some important variables (lateral vehicle velocity, sideslip angle, tyre–road
forces, etc.), which are often not directly measurable because of technical and/or economic
reasons. Therefore, the use of so-called observers, estimators, filters or virtual sensors can
be of great value. Estimation or observation means the extraction of information of a given
variable of interest that is not directly measurable by using only available sensor data. The
idea is to implement a model of the real system in an onboard computer that runs in parallel
with the system itself providing estimation of a given set of states or variables of interest. The
state-space approach in the discrete-time formulation is adopted for modelling. For dynamic
state estimation, the discrete-time approach is both widespread and convenient for real-time
application using onboard systems.

One important aspect of state estimation is that the system to be observed is usually excited
by a stochastic noise w, due for example to imperfections in modelling the system. Therefore,
dynamic systems are not driven only by ‘pure’ control inputs, but unknown and uncontrolled
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disturbances can affect the system behaviour. In addition, sensor readings may be biased and
affected by their own stochastic noise v. Therefore, deterministic open-loop models may be
of limited validity and stochastic closed-loop observers are necessary. One common approach
is the Kalman filter that is a well-known technique for state and parameter estimation. It is a
recursive estimation procedure that uses sequential sets of measurements. The Kalman filter
addresses the general problem of estimating the state of a discrete-time controlled process
that is governed by a linear difference equation (i.e. Equation (5)) with a measurement (i.e.
Equation (9)). In order to implement a state observer using Kalman filtering, the linear sys-
tem, expressed by Equations (5) and (9), needs to be expressed in a stochastic discrete-time
state-space representation

xk+1 = Adxk + Bduk + wk , (11)

zk+1 = Hdxk+1 + vk+1, (12)

where Ad, Bd, Hd are the discretised state matrix, input vector matrix, and measurement
matrix, respectively, xk = [x1,k , . . . , x4,k]T is the state vector at time k, uk is the input vector
at time k, and zk is the observation sampled at time k.

The process disturbance and the measurement noise, wk and vk , respectively, are assumed
to be Gaussian, temporally independent of each other, and white, Q and R being the pro-
cess and measurement noise covariance, respectively. Kalman filtering estimation operates
through the prediction–correction cycle expressed by

Prediction:

x̂−
k+1 = Adx̂k + Bduk , (13)

P−
k+1 = AdPkA

T
d + Q. (14)

Correction:

Kk+1 = P−
k+1HT

d (HdP−
k+1HT

d + R)−1, (15)

x̂k+1 = x̂−
k+1 + Kk+1(zk+1 − Hdx̂−

k+1), (16)

Pk+1 = (I − Kk+1Hd)P
−
k+1, (17)

where x̂−
k+1 is the predicted state vector, P−

k+1 is the variance matrix for x̂−
k+1, Kk+1 is the gain

matrix, x̂k+1 is the updated state vector, and Pk+1 is the updated error covariance estimate. The
prediction equations are responsible for projecting forward in time the current state and error
covariance estimates to obtain the a priori estimates for the next time step. The correction
equations are responsible for the feedback, that is, for incorporating a new measurement into
the a priori estimate to obtain an improved a posteriori estimate.

To sum up, the states being estimated by the proposed observer are the suspension stroke
(x1), velocity of the vehicle body (x2), wheel deflection (x3), and vertical velocity of the
wheel mount (x4). The measurement noise covariance is used to define the error of the sensor
measurements, that is, the accelerations of the sprung and unsprung mass. Table 1 collects the
sensor noise used in this paper that can be generally found on the sensor specification sheet

Table 1. Sensor technical details.

Accelerometer

Sensor noise (1σ ) 0.05 m/s2

Output rate 100 Hz
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Table 2. Parameters of the quarter-car
model used in the simulations, please refer to
Figure 1 for more details.

mb 454.5 kg
mw 45.45 kg
ks 27,625 N/m
cs 2,126 Ns/m
kw 221,000 N/m

(a)

(b)

Figure 2. (a) State estimation using incorrect parameters in the estimator (i.e. kw = 136, 000 N/m). (b) Residuals
obtained from an estimator with incorrect model parameters.
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or from analysing static data from the sensor. In conclusion, using sensor fusion techniques,
virtual sensors can be derived that compute information that would be either too costly or
difficult to measure in practise.

4.1. Parameter sensitivity

First, a simulation was performed to show the effects of incorrect model parameters (i.e.
tyre stiffness) on the observer. The simulation used the parameters of a typical passenger car
(see Table 2) driving with constant travel speed of 10 m/s on a sinusoidal road profile of 5 m

(a)

(b)

Figure 3. (a) State estimation using correct parameters in the estimator (i.e. kw = 221, 000 N/m). (b) Residuals
obtained from an estimator with correct model parameters.
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wave length and 0.1 m amplitude (i.e. with an excitation frequency of 2 Hz). The vertical
behaviour of the vehicle was simulated by discretising Equations (5) and (9) with process
and sensor noise. The acceleration measurements of the sprung and unsprung mass were
corrupted with random noise of the standard deviation as claimed in the specification of the
accelerometers (see Table 1). Additionally, a 2% scale factor error, which is within the normal
sensor’s specifications, was added to both accelerations. The measurements were corrupted in
order to provide realistic sensory input to the model-based observer. First, the estimator was
given the parameters of a different vehicle (i.e. an incorrect tyre stiffness kw = 136, 000 N/m
was assumed in the model with a reduction of about 40% of the nominal (actual) value
kw = 221, 000 N/m), and the results are shown in Figure 2. For the reader’s sake, only one of
the four states obtained from the observer is reported, namely tyre deflection x3, which is the
most affected by kw. In detail, Figure 2(a) shows the simulated and estimated tyre deflection
and reveals how model parameter error leads to biased estimations of the state. One way to
check the model accuracy is to look at the residuals, that is, the difference between the actual
and the estimated measurements. The residuals for a correct observer should be white noise
with zero mean. Conversely, in Figure 2(b) residuals for the unsprung mass acceleration, as
obtained from the observer with incorrect parameter, show a definite shape (or correlation).
The simulation was repeated using the correct value of the tyre stiffness in the estimator. The
results of the estimation of the tyre deflection are shown in Figure 3(a), demonstrating that
with correct parameters the estimation is very accurate even in the presence of a scale factor
error. This is also confirmed when looking at the residuals of the unsprung mass acceleration
which appears approximately as a zero mean white noise (Figure 3(b)).

5. Vehicle parameter estimation

As demonstrated in the previous section, the design of vehicle control systems requires sys-
tem models to be accurate enough to achieve the desired level of closed-loop performance.
Parameters of the models are one of the important factors that determine the accuracy of sys-
tem modelling and eventually the overall performance of closed-loop systems. This section
investigates a parameter estimation scheme that recursively estimates tyre vertical stiffness
using least squares. In order to track time-varying parameters, a forgetting factor is used.
Although alternative algorithms for parameter estimation exist (e.g. extended Kalman filter
by incorporating tyre stiffness in the state variable vector), we found RLS to be an appro-
priate solution to this problem. Estimation of tyre inflation pressure can be directly inferred
from vertical stiffness through a linear relationship. Once vehicle parameters are precisely
estimated, driver warning systems can be developed and the parameterised vehicle dynamics
models with properly estimated parameters can be used for a wide variety of applications
including highway automation, vehicle stability control, and rollover prevention systems.

5.1. Estimation of tyre stiffness using recursive least squares

Tyre stiffness is estimated assuming that mass and suspension properties are known or esti-
mated. It is interesting to note that, with reference to Figure 1, the overall dynamics of the
quarter model can be expressed as

− mbz̈b − mwz̈w = x3kw. (18)

In Equation (18), the first member can be measured by the onboard accelerometers, whereas
the state x3 can be estimated by the observer presented in the previous section. Therefore, kw
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can be obtained through RLS running in parallel with the observer. To this aim, Equation (18)
can be rewritten as

y = ϕTθ , (19)

where

y = [−mbz̈b − mwz̈w],

ϕT = x3,

θ = kw.

(20)

Since y is measured, there exists a measurement error, �y, and the estimation problem can
be reformulated as follows:

arg min
θ

‖ �y ‖

Subject to: ŷ = ϕTθ + �y (21)

The minimisation problem can be solved by RLS that updates the parameter estimate through
the recursion

θt = θt−1 + Gt(yt − ϕT
t θt−1),

Gt = St−1ϕt

λ + ϕT
t St−1ϕt

,

St = St−1 − Gtϕ
T
t St−1

λ

(22)

λ being the so-called forgetting factor. The smaller λ, the smaller the weight of previous sam-
ples. In practice, λ is usually chosen between 0.9 and 1. The use of λ allows the recursive
identification algorithm to be modified to handle the (common) case when the system dynam-
ics are varying over time. Figure 4 compares the block diagram of a conventional observer
with fixed parameters (Figure 4(a)), with the proposed adaptive approach (Figure 4(b)). By

(a)

(b)

Figure 4. (a) Block diagram of a conventional fixed-parameter estimator. (b) Block diagram of the proposed
adaptive estimator using a RLS module running in parallel.
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(a)

(b)

(c)

Figure 5. (a) RLS estimation of tyre stiffness, v = 10.0 m/s (i.e. 2 Hz excitation frequency), sinusoidal road profile
(0.1 m amplitude and 5 wave length), λ = 0.95. (b) State estimation obtained from the observer using RLS parameter
estimation. (c) State estimation error for x3, that is, tyre deflection.
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running a RLS module in parallel with the observer, it is possible to get an updated esti-
mate of the tyre stiffness at each new iteration of the system improving the overall observer
performance.

The exponential convergence of RLS has been proved in some research papers.[22] How-
ever, one should note that this scheme may suffer from covariance ‘wind-up’ problems during
poor excitation. The inverse covariance matrix of the parameter estimate is

S−1
t =

t∑
k=1

λt−kϕkϕ
T
k . (23)

(a)

(b)

Figure 6. (a) RLS estimation of tyre stiffness, v = 28.0 m/s (i.e. 5.6 Hz excitation frequency), sinusoidal road
profile (0.1 m amplitude and 5 wave length), λ = 0.95. (b) State estimation obtained from the observer using RLS
parameter estimation. (c) State estimation error for x3, that is, tyre deflection.
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Therefore, if tyre deflection is small, S−1
t gets closer to singularity, the covariance matrix

is large and the estimates very uncertain. In other words, old information is continuously
discarded, whereas there is very little new dynamic information coming in. As a result, the
estimator becomes extremely sensitive and subject to uncertainty.

Typical results obtained from the RLS approach applied to the running case, presented in
Section 4.1, are shown in Figure 5. Initially, the observer is given an erroneous value of the
tyre stiffness, that is, kw = 136, 000 N/m. In Figure 5(a), the recursive parameter estimation
obtained from the system is shown by a solid black line. Using a forgetting factor of λ = 0.95,
the RLS modules correct the parameter towards its actual value kw = 221, 000 N/m (denoted
by a grey dotted line), after an approximately 9 s adaptation window. As the system adjusts

(a)

(b)

Figure 7. (a) RLS estimation of tyre stiffness, v = 6.5 m/s (i.e. 1.3 Hz excitation frequency), sinusoidal road pro-
file (0.1 m amplitude and 5 wave length), λ = 0.95. (b) State estimation obtained from the observer using RLS
parameter estimation. (c) State estimation error for x3, that is, tyre deflection.



582 G. Reina et al.

tyres stiffness, the output from the observer becomes more accurate and the discrepancy of
the state estimate with the actual value decreases, as shown in Figure 5(b) and 5(c).

The simulation was repeated by varying the vehicle’s travel speed (i.e. varying the input
excitation frequency) for the same sinusoidal road profile (0.1 m amplitude and 5 wave
length) and forgetting factor (λ = 0.95). In detail, in Figure 6 the results obtained from the
system using a travel speed of 28 m/s (5.6 Hz excitation frequency) are shown. The RLS
module responds faster reaching the true tyre stiffness value in about 8 s. Conversely, if the
travel speed decreases to 6.5 m/s (i.e. 1.3 Hz excitation frequency), the parameter is correctly
estimated in about 25 s, as shown in Figure 7.

6. Results

One of the problems in simulating car vertical dynamics is that the road input is not known
a priori. However, most of the driving is performed on horizontal roads where the power
spectral density of the input road-velocity profile żd can be reasonably assumed constant.[23]
Therefore, road excitation can be considered equivalent to a purely random variable (i.e,
white-noise). Excitation variance is typically assumed as σd = 2π · Gr · V , where Gr is the
road roughness coefficient and V is the vehicle forward velocity. The International Standard
Organization (ISO) defines a road classification scheme based on the value of Gr,[24] as
shown in Table 3. For average road class (ISO class C), the road roughness coefficient value
can be chosen as 64 × 10−7 m2cycle/m for a travel speed of 25 m/s.[25] In this simulation,
an abrupt drop in tyre stiffness (pressure) was reproduced during motion at time t = 200 s,
that is, kw(t) = 221, 000 N/m for t <200 s and kw(t) = 136, 000 N/m for t ≥ 200 s. This cor-
responds to a step change from normal to low pressure. A realisation of the input and output
of the system in terms of tyre stiffness estimation is shown in Figure 8(a) using two forgetting
factors, namely λ = 0.95 and λ = 0.99. In both cases, the system estimates correctly the tyre
stiffness flagging the step change. As seen from the figure, a low forgetting factor gives a fast
tracking (Figure 8(b)) but a noisier estimate compared with when a forgetting factor closed to
one is used (Figure 8(c)). Thus, the basic trade-off between fast tracking and noise sensitivity
is confirmed.

6.1. System performance

In order to evaluate the performance of the proposed method in different operating condi-
tions, simulation tests are presented by varying road type, travel velocity and pressure drop.
In all tests, the system was tuned with a forgetting factor λ = 0.98. The first set of simulations
is shown in Figure 9. In this set, a pressure drop of 25% with respect to the nominal value
is considered, which is the warning activation threshold set by the US legislation. Each row
of Figure 9 shows from left to right the recursive estimation of tyre stiffness for increasing
road roughness according to the ISO 8608 (from road class A-very good to class D-poor)
and equal travel speed. Conversely, each column of the same figure shows from top down

Table 3. Road-roughness coefficients Gr (m2 · cycle/m).

A B C D E F G
Road class Very good Good Average Poor Very poor

Gr , ×10−7 4 16 64 256 1024 4096 16,384
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(a)

(b)

(c)

Figure 8. (a) Illustration of RLS estimation of tyre pressure with forgetting factor. True parameter (dotted grey
line), RLS estimate with forgetting factor 0.95 (solid black line), and with forgetting factor 0.99 (solid grey line). (b)
Error in tyre deflection estimation using λ = 0.95. (c) Error in tyre deflection estimation using λ = 0.99.
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Figure 9. Tyre stiffness estimation (25% drop) for varying travel speed and road type: (a) Road class A. (b) Road
class B. (c) Road class D.

the response of the system for increasing travel speed (from 16.7 to 33.3 m/s) and equal road
type. In all cases, the system correctly estimates tyre stiffness within few seconds (about 5 s),
independent of speed and road roughness. Estimation accuracy improves with road rough-
ness and travel speed. However, the influence of velocity is of lesser importance. Worst-case
scenario results for very good road type and slow vehicle, due to low excitation.

Another important aspect is the system sensitivity, that is, the minimum detectable change
in inflation pressure. This is particularly true in view of the adoption of TPMSs by the Euro-
pean Union (expected in 2015) that will target a warning activation threshold of 15% of
pressure drop due to higher speed limits (e.g. German autobahns). A second set of simu-
lations is collected in Figure 10, where a sudden change from normal to low pressure (15%

Figure 10. Tyre stiffness estimation (15% drop) for varying road type and travel speed of 16.7 m/s: (a) Road class
A. (b) Road class B. (c) Road class D.



Vehicle System Dynamics 585

drop), and then back to normal pressure is assumed. A relatively slow travel speed of 16.7 m/s
is set, whereas road type is varied from very good to poor. The system again provides good
estimate of tyre stiffness. The rougher the road, the higher the accuracy.

These figures show that the proposed method is effective in estimating changes in tyre
properties overcoming the possible disadvantages of indirect TPMS in terms of time response
and sensitivity. The system seems to respond well even in the case of low excitation. One
additional advantage is that the system does not require any learning or reset procedure that
can be time consuming and difficult to perform.

7. Conclusions

A model-based estimator for estimating tyre vertical stiffness (and indirectly tyre infla-
tion pressure) during normal driving and using only standard sensors was presented. The
algorithm is based on a Kalman filter supported by recursive least square to give robust and
accurate estimates of tyre stiffness and, at the same time, to allow abrupt changes to be tracked
quickly. Results obtained from simulation tests were presented to validate the proposed
approach, using different disturbance inputs (i.e. sinusoidal road profile and road roughness)
and varying operating conditions (i.e. varying travel speed and pressure drop). The sensitiv-
ity of the system to the forgetting factor in the RLS module was also studied. Especially,
variations in tyre stiffness can be detected quite accurately. The proposed approach could be
useful to implement warning and safety systems and for accurate estimation of the vehicle
states as a possible input to onboard control systems.

A possible limitation of this approach is that it may perform poorly under low excitation
conditions. Before implementation, the self-calibration issue should be carefully investigated
and the system evaluated in field tests on a long-term basis.
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