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Abstract
Purpose – This research aims to address the issue of safe navigation for autonomous vehicles in highly challenging outdoor environments. Indeed,
robust navigation of autonomous mobile robots over long distances requires advanced perception means for terrain traversability assessment.
Design/methodology/approach – The use of visual systems may represent an efficient solution. This paper discusses recent findings in terrain
traversability analysis from RGB-D images. In this context, the concept of point as described only by its Cartesian coordinates is reinterpreted in terms of
local description. As a result, a novel descriptor for inferring the traversability of a terrain through its 3D representation, referred to as the unevenness
point descriptor (UPD), is conceived. This descriptor features robustness and simplicity.
Findings – The UPD-based algorithm shows robust terrain perception capabilities in both indoor and outdoor environment. The algorithm is able to
detect obstacles and terrain irregularities. The system performance is validated in field experiments in both indoor and outdoor environments.
Research limitations/implications – The UPD enhances the interpretation of 3D scene to improve the ambient awareness of unmanned vehicles.
The larger implications of this method reside in its applicability for path planning purposes.
Originality/value – This paper describes a visual algorithm for traversability assessment based on normal vectors analysis. The algorithm is simple and
efficient providing fast real-time implementation, since the UPD does not require any data processing or previously generated digital elevation map to
classify the scene. Moreover, it defines a local descriptor, which can be of general value for segmentation purposes of 3D point clouds and allows the
underlining geometric pattern associated with each single 3D point to be fully captured and difficult scenarios to be correctly handled.
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Erratum

It has come to the attention of Emerald Group Publishing that the
article “3D traversability awareness for rough terrain mobile
robots”, published in Sensor Review, Vol. 34 No. 2, pp. 220-232,
contained a number of errors. This occurred due to an error in the
editorial process. Emerald sincerely apologises to the authors and
the readers for this inconvenience. This has been corrected in the
online version of the article.

I. Introduction

Research in mobile robotics aims at developing technologies

enabling vehicles to travel longer distances with limited
human supervision (Reina et al., 2010). If autonomous
vehicles could drive reliably and robustly through unknown

terrain toward a given location, the implications would be of
great importance for many applications, including mining,
earthmoving, agriculture, search and rescue, planetary

exploration, and, in general, driverless vehicles. Although
autonomous navigation has inspired decades of research,
it still remains an open and active field of investigation. One of

the critical challenges is accurate and robust perception of
the scene to perform many important tasks, including

environment segmentation, classification, mapping and

identification of safe traversable regions of terrain (Reina

et al., 2012). New interest in the field has been raised by the

introduction of the next generation of stereo and depth

cameras that produce accurate 3D representations of the

environment in the form of 3D point clouds. Given a raw 3D

point cloud, the degree of perception depends on the ability to

find models within a scene and matching local regions.

Researchers usually think of a 3D point as defined just by its

Cartesian coordinates (x, y, z) according to the 3D meaning

of the Euclidean metric. However, if only the Cartesian

coordinates of a 3D point are taken into account, the problem

of object recognition may be ill-posed. Therefore, in the

context of perception, the concept of “local descriptor”

(Rusu, 2009; Rusu et al., 2010; Pauly and Kobbelt, 2002)

should be emphasized, in which “rich” 3D data are

considered to perform high-level tasks.
This research addresses the issue of safe navigation for

autonomous vehicles using 3D vision sensors. Specifically,

a new approach for terrain traversability assessment using a 3D

descriptor, referred to as the unevenness point descriptor

(UPD), is presented. This approach is based on the concept of

normal vector to a local surface and it uses principal component

analysis (PCA) for fast and accurate scene interpretation.

By observing the distribution of normal vector direction, it is

possible to interpret the scene giving a traversability index point
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by point and to enable safe driving. The main advantages of the

proposed algorithm are:
. It is simple and computationally efficient, providing real-

time implementation.
. It lends itself very well to the novel imaging technologies

based on 3D point cloud processing.
. It can be successfully applied for outdoor scene

interpretation handling critical scenarios including slopes

and ramps.
. It provides as output a traversability map that can be

directly applied to most grid-based path planners.

The system is demonstrated in field experiments showing its

effectiveness for scene interpretation and automatic obstacle

detection in both indoor and outdoor environments.
The paper is organized as follows. In Section II, a thorough

survey of previous work in this area can be found. Section III

revolves around the theory behind the concepts of local

descriptor and PCA. In Section IV, the UPD descriptor is

presented and discussed in detail. Section V describes the

algorithm to generate theUPDand somepreliminary results are

given using simulated data. The application of the UPD-based

analysis for mobile robot applications is experimentally

validated in Section VI, in which its effectiveness for terrain

traversability is demonstrated. Relevant conclusions are drawn

in Section VII.

II. Related works

Past research addressed the problem of terrain analysis

following different approaches. Proposed solutions change

according to available sensors and data, as presented by

Papadakis (2013), wherein an overview of terrain traversability

analysis methods for unmanned vehicles can be found. Most of

the methods are based on visual information, as inMilella et al.
(2006), in which two visual algorithms are presented. The first

approach concerns 6DoF ego-motion estimation, whereas the

latter estimates wheel sinkage in sandy soil. Using visual

information (Braun et al., 2008), a stereo-vision-based terrain

traversability estimation method for off-road mobile robots is

presented. The authors use normal vectors in order to estimate

the inclination of a sector in an elevation map; moreover, they

classify as non-traversable some regions where the inclination is

higher than the vehicle is capable of scaling. However, the high

computational cost of their approach would make it difficult to

use in real-time navigation tasks. A different method was

studied byDongshin et al. (2007), inwhich the authors describe
a method for terrain classification using point clouds data

obtained by a stereovision. They propose the use of superpixels

as the visual primitives for traversability estimation using a

learning algorithm. On the other hand, 3D depth sensors

including LIDARS or depth cameras have also been

investigated. As an example, Vandapel et al. (2004) acquire

information about terrain using a LIDAR and using local 3D

point statistics segment it into three classes: clutter to capture

grass and tree canopy, linear to capture thin objects like wires or

tree branches, and finally surface to capture solid objects like

ground terrain surface, rocks or tree trunks. As a further

example, Larson et al. (2011) discuss a real-time approach to

analyze the traversability of off-road terrain for unmanned

ground vehicles considering positive and negative obstacles

through elevation information acquired by a LIDAR.

A different approach to traversability estimation based on

learning algorithm and applied to planetary rovers was

described by Howard et al. (2007). Their implemented

learning algorithm was able to classify terrain by learning

from 3D geometry information and by learning from

proprioception. In the same field, a study of multi-sensor

terrain classification for planetary rovers in Mars-like

environments is investigated by Halatci et al. (2007), wherein
the authors propose two classification algorithms based on

Bayesian fusion and meta-classifier fusion. Other works use

different probabilistic methodologies for terrain classification;

an additional example can be found in Kim et al. (2010),

inwhich the authors build traversabilitymaps on camera images

using a Bayesian approach. A different approach consists of

defining a digital elevation map and assigning two indices to

each of its cells: the roughness and the inclination index

(Howard and Saraji, 2001; Osari, 2003; Seraji, 1999).

The former is defined as the variance of the elevation values

in a specific region of the environment, whereas the latter can be

obtained as the average angle of adjacent elevation values with

respect to their neighbors (Rohmer et al., 2010). Merging the

research novelties in data processing and 3D sensors, new

approaches were presented. As an example, Du Pont et al.
(2008), classify terrains using PCA theory and vibration sensor

information. As a matter of fact, 3D data processing for terrain

analysis has gained interest in research as expressed by

Silver et al. (2006), in which the researchers employ laser

range finders or overhead cameras to capture surface 3D point

cloud data and PCA analysis for terrain evaluation. Although

data processing can provide calculation and analysis, for the

practical robotic applications it is required to classify data and

interpret it. A self-learning ground classifier based on geometric

and shape features extracted from radar and stereo data are

presented by Reina andMilella (2012) and Reina et al. (2012),
respectively. A relevant example of practical application is

presented by Neuhaus et al. (2009), in which the authors

propose a new method for navigation in an unstructured

environment using a grid-based approach.
The strengths of this method in comparison to previous

approaches are:
. The definition of a local descriptor that can be of general

value for segmentation purposes of 3D point clouds. It can

also be directly applied to different specific tasks,

including terrain analysis, traversability assessment, and

path planning.
. The use of a descriptor in contrast to a single feature or a set

of features, which allows the underlying geometric pattern

associated with each single 3D point to be fully captured

and difficult scenarios including ramps, edges, and negative

obstacles to be correctly handled. It should also be added

that, the estimation of the UPD in a query point takes into

account the geometric properties of not only the points

located inside the neighborhood, but also those located in

its vicinity, providing accuracy and robustness to the

system.
. The low-computational burden, since UPD does not

require any data processing or previously generated digital

elevation map to classify the scene, as it can be directly

applied to raw 3D point clouds.

III. Theoretical background

This work relies on PCA-based surface analysis for the

extraction of local information from a point cloud. In order to
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provide the necessary background for those unfamiliar with

the topic, this section recalls two theoretical tools: the concept

of local descriptor and surface analysis through PCA.

A. Local descriptors

Perception can be defined as the problem of describing a point

through the definition of an appropriate set of salient local

characteristics. Figure 1 shows an illustrative example that will

help to clarify this concept. In particular, p1 can be seen as a

single point, yet it is the intersection of three perpendicular

planes representing the sides of a cube. Similarly, p2 can also

be seen as the intersection between two perpendicular planes.

Therefore, p1 and p2 can be described by their Cartesian

coordinates augmented with the attribute of “vertex” or

“edge”, respectively, according to their local characteristics or

features. The set of characteristics used to describe a point

defines a “local descriptor”.
Theconceptof local descriptor canbemathematicallyderived.

Let I be a point cloud, i.e. a set of n points defined by their

Cartesian coordinates I ¼ {pi [ R
3; i ¼ 1; 2; . . . ; n}, and let

pq be a given point defined as the query point.The neighborhood

of pq in I can be defined as the set of points such that:

pk
q ¼ {pk

i [ I , R
2 : pk

i 2 pq

�� �� # dm ;i ¼ 1; 2; . . . ; k} ð1Þ

where dm, so-defined as the search radius, is the maximum

distance between pq and each neighbor, k the number of

neighborsofpq, and j · j agenericnorm(without lossof generality,

it is possible to refer to the Euclidean distance). As an illustrative

example, we can refer to Figure 1, where the neighborhood of

the point p1 is represented by a sphere of center p1 and radius dm,

and its neighbors aremarkedbycyandots.A local descriptor ofpq

can be defined as the vector function F that describes the

information content of Pk
q according to a specific feature set:

F pq;P
k
q

� �
¼ x

q
1; x

q
2; . . . ; x

q
n

� �
; ð2Þ

where x
q
j is the ith dimension of the descriptor. By comparing the

local descriptors of two points, namely, p1 and p2, it is possible to
estimate their differences. Let G be the measure of similarity

between p1 and p2, with their associated descriptors F1 and F2,

and let d be their distance:

G ¼ dðF1;F2Þ: ð3Þ

Then, d is a scalar value and can be considered as the degree of

similarity between the given points. If d ! 0 the points can be
considered similar according to the specific feature set.

Conversely, if d increases the points will have different

properties. It is important to note that the effectiveness of the

descriptor is given by its ability to differentiate points in the

presence of rigid transformations, noise, sampling variations,

changes in scale or illumination.

B. Surface analysis

A common method for surface analysis of 3D point clouds, is

basedonPCA.Numerousvariationsare alsoproposedas thePCA

generalization (Kriegel et al., 2008). Specifically, PCAprovides an

efficient method for the estimation of the normal vector to a

surface. As an example, Figure 2 shows a sample RGB-D image

acquiredbyaMicrosoftKinect (2010) sensor andprocessedusing

point cloud library (PCL; Rusu and Cousins, 2011), the normal

vectors to local surfaces obtained from PCA are marked as red

arrows. The distribution of the normal vector direction is rather

uniform for smooth floors, see inset (b), whereas different

directions can be observed in the vicinity of objects, see inset (a).

This intuitively suggests a way to measure the smoothness of a

surface based on the direction distribution of normal vectors, as
exploited by the novel UPD, introduced later in the paper.
The problem of determining the surface inclination in a

specific reference frame, can be seen as the problem of

determining the normal vector of the tangent plane to the

surface at the query point (Rusu, 2009). Although many

different normal estimation methods exist, the simplest one is

based on the first order 3D plane fitting. The tangent plane can

Figure 2 Normal vector-based surface analysis of a RGB-D image

(a) (b)

Notes: (a) Typical distribution of normal vectors found in an
irregular region; (b) typical distribution of normal vectors in a
regular region

Figure 1 Points in the scene can be defined by their Cartesian
coordinates augmented with their attributes or features that describe
their local characteristics

Pk
1

Pk
2

p1

dm

p2

y

z

x

dm
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be obtained as a least square fitting inPk
q . A generic plane can be

represented as a point x and its normal vector ~n; the distance

between the generic point pi [ Pk
q and the plane is defined as

l i ¼ ð pi 2 xÞ~n. If x is the centroid ofPk
q , the solution for ~n can be

obtained by analysing the Eigenvalues and eigenvectors of the

covariance matrix C [ R
ð3£3Þ of Pk

q , expressed by:

C ¼ 1

k

Xk

i¼1
jið pi 2 xÞð pi 2 xÞT ð4Þ

C · ~vj ¼ lj · ~nj

The term ji is the possible weight for pi, x is the centroid of Pk
q

that does not necessarily coincide with pq, and it is usually

considered as unitary. The covariance matrix C is symmetric,

positive-definitive, and its Eigenvalues are real. The

eigenvectors vj are an orthogonal subspace, and they are

the principal components of Pk
q . Let us suppose that the

Eigenvalues of C are 0 # l0 # l1 # l2, then the eigenvector of

the smallest Eigenvalue l0 represents the approximation of the

normal vector ~n ¼ ðnx; ny; nsÞ or its opposite 2~n. More details

about this formulation can be found in Rusu (2009).
One should note that the sign ambiguity of the normal

vector is not analytically solvable, yet it is generally estimated

through the analysis of the other eigenvectors that complete

the Eigenspace. As a result, each surface will have two normal

vectors, one pointing upwards and one pointing downwards.

Here, conventionally all normal vectors will be considered

pointing upwards.

IV. Unevenness point descriptor

Normal vectors can be used for terrain analysis purposes.

Non-traversable obstacles or high irregular ground can be

detected and avoided by an autonomous vehicle along its path

toward a target in both indoor and outdoor scenarios. In this

section, a new approach for terrain evaluation is proposed

using a new point descriptor referred to as the UPD.
The idea behind the UPD is to have a simple compound

measure that takes into account both terrain irregularity and

inclination.
Let us consider the query point pq, and its neighborhood

Pk
q , computed as defined in Section II. Given the ~ni normal

vectors, with i ¼ 1, 2, . . . , k, where k is the number of

neighbours, it is possible to compute their vector sum:

~r
q
k ¼ ~n1 þ ~n2 þ · · ·þ ~nk ¼

Xk

i¼1

~ni : ð5Þ

Then, the UPD FU in pq, can be defined as:

FU ð pq; p
kÞ ¼ rq

x; r
q
y; r

q
z; z

q
k

n o
; ð6Þ

where rq
x; r

q
y; r

q
z are the scalar components of ~r

q
k , and z

q
k is

defined by the following equation (7). The components of ~r
q
k

provide information about the global direction of the local

surface in the sensor reference frame. On the other hand, the

parameter z
q
k can be interpreted as a local inverse “unevenness

index”, since it assesses the degree of local roughness.

It depends on the distribution of the direction of the normal

vectors in the neighborhood and it is given by:

z
q
k ¼

~r
q
k

�� ��
k

; ð7Þ

where ~r q
k has been defined in equation (5), and k is the

number of neighbors in P k
q . By dividing by k, z

q
k is normalized

and neighborhoods, including a different number of points,

can be compared to each other.
Themain advantages of this descriptor reside in its simplicity

and robustness for traversability evaluation. Moreover, the

UPD can be easily adapted to the specific task of the robot by

appropriately setting the neighborhood size, i.e. dm in

equation (1). In practice, its value will be fixed at the

beginning of the operations based on the robot geometric size

(Bellone et al., 2013). However, the performance of the system

is greatly affected by the search radius. If dm is too large,

all normal vectors will influence each other producing poor

results and making it difficult to detect the exact location of the

discontinuity. As a general rule, the larger the search radius,

the wider the portion of the environment to consider for the

estimation of the UPD in the given query point. Therefore,

all obstacles within a distance of dm from this point will affect

the index estimation. This consideration in conjunction with

the knowledge of the vehicle geometric size and the field of

view of the sensor, suggest a possible approach for the optimal

choice of dm.
Now, one should note that the vectors influencing the UPD

belong to the points in the neighborhood of the query point pq,

although each normal vector is computed including a different

set of points. Hence, the informative content of UPD includes a

piece of information not only about the points located inside the

neighborhood, but also about those which are located in its

vicinity. In order to clarify this concept, Figure 3 shows a

representation of the neighborhoods influencing directly and

indirectly the UPD value in pq. In particular, the red

circumference denotes the neighborhood of pq, whereas the

blackcircumferencesdenote theneighborhoodsof three example

points. The point pj belongs to the neighborhood of pi, while pi

belongs to the neighborhood of pq. Hence, pi directly influence

the UPD value in pq, whereas pj indirectly influences it, even

though it does belong to neighborhood of pq. From a practical

point of view, the normal vector of pi is calculated including, in

the covariance matrix, the informative content of the point pj.

Figure 3 Normal vector-based surface analysis of a RGB-D image

Note: The neighborhood of pq is directly influenced
by the point denoted in red, whereas the points
denoted in black influence the value of the normal
vector of the neighbors of pq
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A. Remarks

This section underlines two remarks regarding the UPD. The
first concerns the evaluation of its consistency. Essentially,
we are interested in knowing when the robot can trust UPD
value. Its consistency is mainly influenced by two factors:
1 the density of the cloud; and
2 the stability of the surface.

Both are related to the information content of the
neighborhood. The second aspect concerns the orientation of
surfaces representing possible obstacles and, consequently,
their interpretation.
In general, 3D point clouds are composed by dense and
not-dense areas due to sensor limitations (e.g. occluded areas or
pixels at long distances). This affects the local density of the
point cloud.With the aim to describe the local density of a point
cloud, let us define the scalar value rv as “volumetric discrete
density” of a point cloud, given by the number of points in
the volume unit. In the same way, it is possible to define the
“surface discrete density” ra, as the number of points located in
a surface unit.
Let us consider rv as the volumetric discrete density as defined

above, the maximum number of points in a neighborhood mp

can be expressed by the product between the volumetric density
and the volume of the sphere with radius dm:

mp ¼ rv

2

3
pd2

m

� �
; ð8Þ

where dm is the search radius of the neighborhood as defined in
equation (1).However, the formulation in equation (8) does not
take into account that, from a practical point of view, there is no
possibility of having the volume completely full of points.
Indeed, the laser beam originated from the sensor impacts an
object generating a set of points describing the shape of its
surface. In order to better clarify this concept, let us consider
Figure 4, where vp is the “viewpoint” of the sensor. Figure 4
describes a typical neighborhood, supposed to be a sphere with
radius dm, of a generic point pq belonging to a plane. As every
neighborhood, it can include only the information of a surface
portion. Even though the surface is irregular, the neighborhood
will describe only a portion of it. Therefore, the estimated
number of points in a neighborhood is given, with reasonable
accuracy, by the number of points in the intersection between a

planar surface and the sphere supposed to be the shape of the
neighborhood. Such intersection is a circumference. Moreover,
if the query point belongs to the intersecting surface, and it is
considered as the centroid of the neighborhood, then the
intersecting circumference will have radius dm. Given the above,
it is possible to rewrite equation (8) as the product between
the surface density ra and the area of the circumference with
radius dm:

me ¼ ra 2pd2
m

	 

: ð9Þ

The parameter me is defined as the expected number of points in
the neighborhood. One should note that, in equation (9) the
surface density of the cloud ra, is considered instead of rv. Given
the above, the ratio between the number of points in the
neighborhood k, see equation (1), and the number of expected
points in thesameneighborhoodme, seeequation (9), is givenby:

c ¼ k=me: ð10Þ

From the equation (10) it should be noted that:
. If k < me then c < 1 and the neighborhood has exactly the

expected number of points.
. If k ! me then c ! 1 and the neighborhood has less point

than expected. As a result, the neighborhood may not
have enough information for estimating the UPD.

. If k @ me then c @ 1 and the neighborhood has more
points than expected. Hence, there is redundancy of
information in the neighborhood.

Generally, c ! 1 in the vicinity of an object boundary, where
there is a loss of information due to the surface variation. This
happens often in the case of the proximity of border regions,
where generally there is not enough information to fully describe
the terrain.Whereas, c @ 1 in the case of possible reflections that
produce noise and false points in the laser acquisition.
The last remark concerning the UPD is the orientation

analysis. From a mathematical point of view, vertical and
horizontal surfaces might be represented by the same value of
the unevenness index, since it provides regularity information
only, regardless of the surface inclination. Although the
horizontal surface can be traversed, the vertical one typically
describes obstacles. In Figure 5(a), an explicative example is
shown. Here, the ground reference frame is marked as blue
arrows and a typical vector belonging to the ground is marked
as a green arrow. One should note that a typical ground
normal vector should be aligned with the z-axis. In the same
Figure 5(a), the red arrows mark vectors belonging to objects.
As shown, their orientation is typically misaligned with
respect to z-axis. Hence, given the query point pq and its
r-vector, the angle aq between the z-axis and the r-vector can
be obtained as:

aq ¼ arccos
rq
z

krqk

� �
: ð11Þ

The orientation analysis can be translated into a simple
condition where a point can be considered as non-traversable
if aq . amax, where amax is a user choice and it should be
taken according to the vehicle capability.
In Figure 5(b) a graphical explanation can be seen. The green

vector r1 can be supposed to be ground, whereas the red vector
r2 may belong to a non-traversable surface. Their angle are,
respectively, a1 and a2, and they are supposed to be
a1 , amax , a2.

Figure 4 Representation of surface acquired from a sensor

Note: The vp is the viewpoint, (xs, ys, zs) is the sensor reference
frame, (xw, yw, zw) is the surface reference frame, pq is the query
point with its normal vector ni and dm is the radius of the sphere
representing the neighborhood
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V. Algorithm description

In this section, the algorithm for UPD will be thoroughly

described. Computationally and numerically speaking, the

factors that mostly affect the performance of the algorithm are

the total number of points in the 3D image and the dimension

of the neighborhood Pk. Specifically, the computational

burden of the algorithm increases with the dimension of Pk,

which is related to the search radius dm. The algorithm might

be seen as divided into two main stages: the normal vector

estimation and the UPD analysis (Algorithm 1). The former

includes the steps from 1 to 6, where the algorithm computes

the normal vector for each point in the 3D image, whereas the

latter includes steps from points 7 to 12, in which the

algorithm performs the UPD analysis.
The algorithm for the estimation of the UPD can be

summarized as follows:

Algorithm 1. Pseudocode of the UPD
Normal vector estimation:
1. Point cloud acquisition, filtering and downsampling
2. For all pi do

3. Pi
k selection, equation (1)

4. Compute the covariance matrix in Pi
k, equation (4)

5. Compute normal vector of pi as the eigenvector of l0 in

equation (4)
6. End

UPD analysis:
7. For all pi do

8. pi
k selection equation (1)

9. Compute equation (10)
10. if c . cmin

11. Compute the vector sum equation (5)
12. if ai , amax the point pi might be traversable
13. Compute Unevenness Index equation (7)
14. else, the point pi is not traversable
15. else, no correct estimation of the normal vector in pi

16. End

The first stage regarding normal vectors estimation is simple
and well known. Here, we will focus our attention on the
second stage concerning the UPD analysis. This part of the
algorithm was optimized for avoiding unnecessary
calculations. First of all, it is necessary to check whether the
selected neighborhood contains useful information, using
equation (10) and defining a minimum threshold cmin.
If c , cmin, it is not possible to have a correct estimation of
the normal vectors. If the condition is verified, then the
normal vector estimated in pi can be considered trustworthy,
otherwise the estimation of the normal vector is considered
uncertain and the associated UPD calculation is not
performed. After this, equation (5) provides the vector sum
of all normal vectors in the neighborhood and it is possible to
check and classify obstacles using the condition on the line 12
of Algorithm 1, i.e. ai , amax. Finally, using equation (7) the
unevenness index associated with pi can be obtained.

A. Comparison with the literature

In order to compare the proposed approach with existing
methods, UPD-based analysis and roughness analysis
(Rohmer et al., 2010), are implemented using simulated
data. The use of simulated data provides a reliable
comparison framework. The simulations include two
different data sets. In the first data set, the presence of a
908 corner is generated by intersecting two orthogonal planes
whose dimensions are of 1 £ 1m with a resolution of 0.01m.
Point clouds are automatically generated by a Cþþ code and
represented by a grid with points 0.01m apart. In the second
data set, a 308 ramp is simulated. Attention is given to the
unevenness index, i.e. the fourth component of the UPD,
see equation (7). In general, high values of z

q
k suggest

regularity, low values indicate irregularity, as reflected by the
color scale associated with Figure 6.
Figure 6(a) shows the results obtained applying the

unevenness index to the 908 corner. The search radius used
in this simulation is 0.1m. The UPD analysis results in low
values of z

q
k in proximity of the corner that is correctly detected

as an irregular region. On the other hand, Figure 6(b) shows

Figure 5 Orientation analysis

x

z
y

ground plane

xrx

ry

rz

z

r2

r1 y

pq

y

a1

a2

amax

(a) (b)

Notes: (a) The orientation analysis superimposed on the camera image: the green arrow marks a
typical normal vector belonging to the ground, whereas the red arrows mark typical normal vectors
belonging to obstacles; the ground reference frame is marked in blue; (b) geometric interpretation
of the orientation analysis based on the UPD
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the same scenario analyzed by applying the roughness index B,

i.e. the standard deviation of the terrain elevation over a local

surface, which is assumed to be equal to the neighborhood of

the query point in this analysis. By considering the terrain

elevation only, the roughness index erroneously marks the

whole surface as irregular. In Figure 6(c) and (d), the UPD is

compared with the roughness index for a scenario featuring a

rampwith a slope of 308. Figure 6(c) shows the results obtained

from the UPD-based approach. As expected, the lower border

of the ramp is flagged as irregular, whereas the ramp itself is

correctly labeled as traversable. One should note that, the lower

border of the ramp is flagged as irregular, yet the unevenness

index is higher than in Figure 6(a). As a result, the UPD is able

to distinguish between different levels of irregularity.

This represents one advantage of the UPD-based analysis.

In Figure 6(d), the same scene is analyzed applying the

roughness index. As in Figure 6(b), by relying only on terrain

elevation, the ramp is misclassified as non-traversable by the

roughness index. In contrast, the UPD approach is based on

the analysis of the local normal vectors providing a similar score

for the ground and the ramp that are both classified as

traversable.

B. Computational performance

The algorithm was implemented in Cþþ including PCL for

fast 3D data elaboration. The tests were performed on an

ASUS-EeePC-1215N. The choice of using a low performance

computer for the tests derives from the practical application

on robots featuring low performance on-board computers.

The computational performance of the UPD-based

algorithm is affected by various factors, such as point cloud

size, resolution anddata denseness.Moreover, the search radius
dm, introduced in equation (1), affects the performance of the

algorithm and it should be chosen according to the specific

application and robot. In order to show the effect of the

parameters tightly related to the UPD, the computational
performancewas evaluated on simulated data including a single

point cloud. The simulated point cloud is a 1 £ 1m regular

plane, numerically generated and perfectly homogenous.

Table I lists the results of the algorithm. To evaluate the

performance in different conditions, the plane resolution was
progressively increased with the point cloud size, ranging from

4,489 to 161,225 points. Then, the execution time was

measured, by a Cþþ routine, varying the search radius from

0.01m to 0.05m. The values in Table I are also plotted in

Figure 7, in which a graph of the computational performance is
shown. The computational time for the case dm ¼ 0.01m is

plotted against the point cloud size using a green line, whereas

Figure 6 Comparison of the UPD with the roughness index for simulated surface
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Notes: (a)-(c) Results obtained from the UPD-based analysis; (b)-(d) results obtained from the roughness index; the UPD
labels both ground and ramp as traversable, whereas the roughness index provides different scores B for the ground
(B = Bmin) and the ramp (B = Bmax)

Table I Computational performance

dm 5 0.01 (m) dm 5 0.025 (m) dm 5 0.05 (m)

Point clouds size Execution time (s)

4,489 0.096 0.153 0.263

10,201 0.274 0.431 0.895

17,956 0.497 0.957 2.209

40,401 1.353 3.586 10.501

160,801 10.394 42.859 161.225
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grey and black lines show the cases of dm ¼ 0.025m and

dm ¼ 0.05m, respectively. At a constant point cloud size, the

larger the search radius, the higher the computational time.

However, the use of a large search radius leads to poor results for

scene interpretation due to over-fitting, i.e. too many points

included in the estimation of UPD.
In summary, the UPD algorithm requires less than 1 s for

cloud size lower than 20,000 points, hence, it is feasible for

practical applications. Moreover, computational performance

could be greatly improved on robots using high performing

processors.

VI. Experimental results

In this section, the use of the UPD for terrain traversability is

demonstrated using different data sets acquired in indoor and

outdoor environments. The test instrumentation includes an

ASUS-EeePC-1215N featuring the Intel AtomD525 dual core

processor, aNVIDIA IONdiscrete graphics processor and3GB

of RAM memory. In order to demonstrate its versatility and

general applicability, it was applied to 3D point clouds

generated by two sensors that differ in resolution, accuracy

and field of view. Specifically, a Microsoft Kinect RGB-D

camerawas used for indoor acquisitions and integratedwith the

rover Dune, built at the Applied Mechanics Laboratory of the

University of Salento, whereas the Point Grey XB3 stereo

system was employed during outdoor testing mounted on an

experimental tractor. The latter part of the research was

performed within the European project Ambient Awareness for

AutonomousAgricultural Vehicles (QUAD-AV), which aims to

develop a driverless autonomous tractor (Milella et al., 2013).

While theKinect camera has a depth camerawith a resolution of

640 £ 480 and automatically provides 3D point clouds data

using the OpenNI Cþþ library, the XB3 trinocular camera

needs a pre-elaboration for generating point clouds from each

stereo pair, including the following steps:
. Rectification.Each imageplane is transformed so that pairs of

conjugate epipolar lines become collinear and parallel to one

of the image axes. Using rectified images, the problem of

computing correspondences is reduced from a 2D to a 1D

search problem, typically along the horizontal raster lines of

the rectified images. Rectification matrices are computed in

the calibration step.
. Disparity map computation. To compute the disparity map

a stereo block matching algorithm is used that finds

corresponding points by a sliding sum of absolute

difference (SAD) window.
. 3D point cloud generation in the reference camera frame. Being

the stereo pair calibrated both intrinsically and extrinsically,

disparity values can be converted in depth values and 3D

coordinates can be computed in the reference camera frame

for all matched points.
. Transformation from the reference camera frame to the vehicle

reference frame. In this stage 3D points are transformed

from the camera frame to the vehicle frame.
. Statistical filtering. A statistical filter is applied to reduce

noise and remove outlying points.
. Voxelization. In order to decrease the computational burden

the number of points is reduced using a voxelized grid

approach. A 3D voxel gridwith a leaf size of 10 cm is created

over the input point cloud space.Then, all the points in each

voxel are approximated with their centroid.

A. Indoor scenario

The indoor dataset corresponds to a survey in the hallway of

the Department of Engineering for Innovation of the

University of Salento. Figure 8 shows the result of the UPD

approach for an indoor dataset, composed of 200 frames

acquired by a Kinect camera at 1Hz frequency, each RGB-D

image is composed of approximately 300,000 points. In order

to decrease the computational burden, the RGB-D image is

filtered and downsampled. The algorithm runs on a filtered

cloud composed of about 20,000 points. In these conditions,

the ASUS-EeePC-1215N is able to elaborate about two

frames per second.
In Figure 8, the original visual image acquired by the sensor is

shown overlaid with the results obtained from the UPD-based

analysis. Traversable areas are correctly denoted by green dots,

geometric discontinuities are also flagged appropriately at the

floor-wall intersections, using a color scale proportional to the

estimated unevenness index as expressed by equation (7). As it

can be seen from these figures, the UPD-based analysis

Figure 7 Computational performance graph of the results collected in Table I
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correctly detects the smooth floor and the static (walls and

doors) and dynamic obstacles (humans) present in the scene.
InTable II, a quantitative evaluationof the classification results

in termsof traversable or non-traversable points canbe seen.The

error rate was addressed through comparison with ground-truth

data obtained by manual labeling. A subset of ten frames

extracted from the indoor dataset was analyzed taking into

account alsoFigure 8(a) and (b).The“grounddetection error” is

the percentage error between the points manually labeled as

ground and the points interpreted as ground by the algorithm.

The “non-ground detection error” is the percentage error

between the points manually labeled as non-ground and the

points marked as non-ground by the algorithm. Lastly,

the “unreliable estimation” column refers to points in which

the neighborhood does not contain enough information for

the correct estimation of the UPD descriptor, according to the

analysis proposed in Section IV.A. For indoor environments

the percentage ofunreliable points is low thanks to the highdepth

accuracy of the Kinect sensor. The error computed for the

scenario of Figure 8(a) is relatively small due to the structured

nature of the environment, 3.36 and 1.49 percent in ground and

non-grounddetection, respectively.While theerrorcomputed for

the scene of Figure 8(b) is 7.52 and 6.85 percent in ground

and non-ground detection, due to the presence of obstacles.

However, when considering the average error computed over ten

frames, the error results in 3.58 and 3.66 percent, respectively,

for ground and non-ground detection.

B. Outdoor scenarios

A dataset was acquired during a survey of typical agricultural

environments using an experimental tractor, and it comprises

of more than 1,000 point clouds generated using the XB3

stereo camera with a sampling rate of 2Hz. The XB3 camera

was mounted at the front of an experimental tractor. Due to

the large amount of data, only some example experiments can

be shown. Outdoor data refers to a larger field of view, and

they are generally wider, less accurate and including a large

number of outlier than indoor data. The following scenarios

were encountered during the experiments:
. positive;
. negative; and
. dynamic obstacles.

In particular, a positive obstacle can be seen as an object

higher than ground level, whereas a negative obstacle is lower

than ground level. In the case of a positive obstacle the robot

risks a collision; conversely a negative obstacle can be the

cause of a crash. A dynamic object is something that suddenly

appears in the scene interpretable as an obstacle, generally

represented by human operators, other moving machineries

or even animals. In this particular case the robot should be

able to preserve safety.
Figure 9 shows the results obtained by the system in typical

agricultural scenarios. The original image is overlaid with the

results of the UPD analysis. Green dots mark traversable

region. The color scale denotes the characteristics of

traversability of the terrain according to the estimated

unevenness index as expressed by equation (7). Black dots

denote a region where the estimation of UPD is considered as

not reliable as expressed by equation (10).
Let us refer to the scenario of Figure 9(a) including a

relatively flat terrain with a low wall and a low-steep ramp. The

wall is correctly flagged as a positive obstacle. It is worthwhile

noting that the application of the conventional roughness index,

i.e. the variance of the elevation value (Rohmer et al., 2010),

to this specific scenariowould provide poor classification results

Figure 8 Results of the UPD-based traversability evaluation

(a)

zmax zmin ai > amax

(b)

Normal vector estimation not
trustworthy

Notes: (a) Corridor scenario; (b) dynamic object detection; the classification results are expressed in color
scale shown at the bottom of the figure; green dots denote traversable regions, red points denote
non-traversable areas according to orientation analysis and yellow points mark unreliable observations

Table II Detection error in indoor scenarios

Frame

Ground detection

error (%)

Non-ground

detection error (%)

Unreliable

estimation (%)

Figure 8(a) 3.36 1.49 1.75

Figure 8(b) 7.52 6.85 0.53

Average

(10 frames)

3.58 3.66 1.56
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across the ramp that would be recognized as an obstacle.

In contrast, the UPD-based approach correctly interprets the

ramp as a traversable surface, due to the local smoothness and

low global inclination. As already shown in the simulations

discussed in Section V.A, the reason for the improvement in

performance lies in the analysis of the local characteristics of the

surface instead of the consideration of elevation values only.

This makes the UPDmore stable and robust than the standard

roughness index. Figure 9(b) shows a scenariowhere the tractor

is driving on a trail with a ditch on the left and high vegetation on

the right. The UDP-based analysis correctly classifies as

traversable the free path, whereas the negative and positive

obstacles are marked as not traversable.
A different scenario is depicted in Figure 9(c), comprising

relatively flat terrain and awalking humanoperator in front of the

camera representingadynamicobject.TheUPD-based classifier

againprovides consistent results: the terrain and the obstacles are

correctly interpreted as traversable and non-traversable,

respectively. The last case is shown in Figure 9(d), where two

human operators are surrounded by high vegetation. Even in

this case, the UPD is able to correctly distinguish obstacles and

free path.
Table III presents the quantitative evaluation of the algorithm

for the outdoor dataset through comparison with manually

labeled ground-truth data. The error is generally higher than

the indoor dataset due to the lower depth accuracy of the XB3

Figure 9 Results of the UPD-based traversability evaluatio

(a) (b)

(c) (d)

Notes: (a) A low-steep ramp is classified as traversable by the system; (b) the ditch on the left is correctly
interpreted as negative obstacle while the high vegetation on the right is interpreted as positive obstacle;
(c) a walking human operator crosses the scene representing a dynamic obstacle; (d) complex scenario
including trees and human operators; the classification results are expressed in color scale shown at the bottom
of the figure: green dots denote traversable regions, red points denote non-traversable areas according to
orientation analysis and yellow points mark unreliable observations

Table III Detection error in outdoor scenarios

Figures

Ground detection

error (%)

Non-ground

detection error (%)

Unreliable

estimation (%)

Figure 9(a) 4.68 7.67 2.99

Figure 9(b) 6.96 9.70 2.74

Figure 9(c) 2.49 13.61 11.13

Figure 9(d) 29.21 34.53 5.32

Average

(10 frames)

10.42 15.97 5.54
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camera. In detail, the error is relatively low for the scenario of

Figure 9(a), in which the ground detection error is less than

5 percent. The error computed for the scene of Figure 9(b)

increases due to the presence of the ditch on the left and the high

vegetation on the right, yet it is less than 7 percent and still

acceptable. In the scenario of Figure 9(c) the error of the non-

ground detections increases, possibly due to the presence of

high distance data where the accuracy of the stereovision drops.

On the other hand, the ground detection error for the same

scene is rather low, due to the presence of even terrain at short

distance. A complex scenario is in Figure 9(d), in which, even

though a large part of the ground was correctly detected, the

error grows to around 30 percent due to the presence of a large

number of objects. Moreover, the scene presents numerous

outlying points that may be a cause of misinterpretation. When

considering the average error estimated over a selected subset

of ten scenes, the results obtained by the UPD-classifier are

robust showing that the algorithmcanbe used for outdoor scene

interpretation.
A further evaluation of the performance of the algorithm is

shown in Figure 10, in which two regions of the same image

were compared through a histogram analysis showing the

distribution of the features of the UPD. From the scenario

shown in Figure 9(c), two 3D regions were manually extracted.

The first region, denoted by green dots, refers to a flat patch

of terrain, whereas the second region, denoted by red dots,

Figure 10 Histogram of the UPD for two regions of the picture in Figure 9(b)
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corresponds to the 3D reconstruction of the operator in the

scene, see Figure 10(a). Two histograms for each region were

obtained analyzing the unevenness index, equation (7),

and the inclination angle aq between the r vector and the

z-axis, equation (11). The distribution of the unevenness index

is plotted in Figure 10(b) and (c), for the ground and non-

ground regions, respectively, whereas Figure 10(d) and (e)

show the histogram of the inclination angle. The histograms

show the number of analyzed points in percentage against the

unevenness index and the inclination angle, respectively.

Looking at the green bins of Figure 10(b), one can note that,

the 100 percent of points are located close to the value 1, and

this suggests high regularity of the region (ground). Conversely,

red bins, in Figure 10(c), correspond to the region including

the human operator, and its histogram exhibits a large spread

across the x-axis, since it includes points having different

characteristic of regularity. The result is also confirmed for the

inclination angle histograms, in which the ground region is

characterized by low angles, Figure 10(d), while the

non-ground region is characterized by high inclination angles,

Figure 10(e). As a matter of fact, Figure 10(d) shows that

100 percent of points feature an inclination angle less than 58,

whereas the bins in Figure 10(e) are concentrated around

70-808 of inclination. The presence of a small concentration of

bins scattered along all x-axis is justified by the different

location of the points according to the shape of the obstacle.

VII. Conclusion

The use of visual sensors and computer vision algorithms in the

field of mobile robotics has been increasingly adopted for scene

interpretation. Although a rich literature exists,more research is

still required. In this paper, a new local descriptor has been

proposed for scene interpretation based on the analysis of the

distribution of the normal vector direction. The effectiveness of

theUPDhas been demonstrated in field experiments for terrain

traversability assessment showing its advantages. The results

obtained applying the proposed approach to indoor data

indicates that the system produces highly reliable results on

dense and clean data, but current stereo techniques cannot yet

producepoint clouds of comparabledensity andquality. For this

reason, the results on outdoor environments were less accurate.

The overall performance of the UPD showed that it could be

used to enhance the ability of a robot to interpret images for

navigation and obstacle negotiation purposes, since it may be

easily integrated in a cost function for path planning purposes.
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