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a b s t r a c t

Autonomous driving is a challenging problem in mobile robotics, particularly when the domain is
unstructured, as in an outdoor setting. In addition, field scenarios are often characterized by low visibility
as well, due to changes in lighting conditions, weather phenomena including fog, rain, snow and hail, or
the presence of dust clouds and smoke. Thus, advanced perception systems are primarily required for
an off-road robot to sense and understand its environment recognizing artificial and natural structures,
topology, vegetation and paths, while ensuring, at the same time, robustness under compromised
visibility. In this paper the use of millimeter-wave radar is proposed as a possible solution for all-
weather off-road perception. A self-learning approach is developed to train a classifier for radar image
interpretation and autonomous navigation. The proposed classifier features twomain stages: an adaptive
training stage and a classification stage. During the training stage, the system automatically learns
to associate the appearance of radar data with class labels. Then, it makes predictions based on past
observations. The training set is continuously updated online using the latest radar readings, thus making
it feasible to use the system for long range and long duration navigation, over changing environments.
Experimental results, obtained with an unmanned ground vehicle operating in a rural environment,
are presented to validate this approach. A quantitative comparison with laser data is also included
showing good range accuracy and mapping ability as well. Finally, conclusions are drawn on the utility of
millimeter-wave radar as a robotic sensor for persistent and accurate perception in natural scenarios.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Research in mobile robotics aims to develop technologies
that allow vehicles to travel longer distances with limited hu-
man supervision. If robotic vehicles could reliably and robustly
drive through unknown terrain toward a given location, the im-
plications would be of great importance for many applications
including exploration and reconnaissance (both on Earth and
extra-terrestrially), search and rescue operations, and driving
safety (e.g., development of automatic obstacle avoidance sys-
tems). Some notable examples can be found in the literature. On
Mars, two robotic rovers have been exploring and collecting data
since 2004. TheMars Rovers, however, are carefullymonitored and
controlled; they cannot be considered as fully autonomous [1]. An-
other prominent example is the 2005 DARPA Grand Challenge [2],
which featured fully autonomous vehicles racing over a 212-km
desert course. Nevertheless, the Grand Challenge required vehicles
to drive autonomously from waypoint to waypoint along a desert
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road: an arguably easier task than off-road navigation through
arbitrary terrain. Although autonomous navigation has inspired
decades of research, it still remains an open and active field of in-
vestigation. One of the critical challenges is accurate and robust
scene understanding to perform many important tasks, including
environment segmentation and classification, mapping and iden-
tification of terrain regions that can be safely traversed. One addi-
tional problem connected with autonomy in field scenarios is that
visibility conditions are often poor. Day/night cycles change illu-
mination conditions. Weather phenomena such as fog, rain, snow
and hail impede visual perception. Dust clouds rise in excavation
sites, and agricultural fields, and they are expected during plane-
tary exploration. Smoke also compromises visibility in fire emer-
gencies and disaster sites. Laser and vision are common imaging
techniques affected by these conditions [3]. Sonar is not affected by
visibility restrictions. However, it is considered of limited utility for
field robots due to high atmospheric attenuation, noise, and reflec-
tions by specular surfaces. While laser scanners and cameras may
have difficulties sensing in dusty environments, radar operates at
a wavelength that penetrates dust and other visual obscurants and
it can be successfully used as a complementary sensor to conven-
tional range devices. Furthermore, radar can provide information
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of distributed and multiple targets that appear in a single observa-
tion, whereas other range sensors are generally limited to one tar-
get return per emission, although multi-peak and last-peak-based
lasers solve this problem to some extent, and are becoming more
common. Nevertheless, radar has shortcomings as well, such as
large footprint, specularity effects, and limited range resolution, all
of which may result in poor environmental survey or difficulty in
interpretation. In this research, we propose the use of millimeter-
wave (MMW) radar for accurate and persistent perception of the
environment. Scene understanding has been one of the goals of
imaging sensor systems in general and particularly of computer vi-
sion for decades. Recently, the application of statistical learning has
given rise to new interest in this field [4]. Statistically trainedmod-
els have an advantage over deterministic, hand-tuned systems,
especially when the complexity of the model exceeds the capabil-
ities of human experts, as is the case with robust scene analysis.
This paper presents an adaptive self-learning classifier using radar
data. First, the system automatically learns to associate the appear-
ance of radar data with class labels during a training stage. Then, it
makes predictions based on past observations classifying new data
into two broad categories, namely ground and non-ground. The
ground class corresponds to returns from the terrain, whereas the
non-ground class corresponds to all other returns, including sensor
misreading and reflections from above-ground objects (i.e., obsta-
cles) or fromoccluded areas. Since the characteristics of the ground
may change geographically and over time, the system is continu-
ously retrained in every scan: new automatically labeled data are
added to the ground model replacing the oldest labels in order to
incorporate changes in the ground appearance.

The radar-based classifier leads to the following main advan-
tages: (a) enabling technology for all visibility-condition naviga-
tion systems, (b) self-learning training of the classifier, where the
radar allows the vehicle to automatically acquire a set of ground
samples, eliminating the need for time-consuming manual label-
ing, (c) continuous updating of the system during the vehicle’s op-
eration, thus making it adaptive and feasible for long range and
long duration navigation applications, and (d) accuracy improve-
ment in range estimation for enhanced environment mapping.

In this investigation, a mechanically scanned MMW radar,
designed for perception and navigation in low visibility conditions,
is employed. Although the sensor is custom built at the Australian
Centre for Field Robotics (ACFR), it is similar in performance to
other commercially available systems.1 It is a 95-GHz frequency-
modulated continuous wave (FMCW) MMW radar that reports
the amplitude of echoes at ranges between 1 and 120 m. The
wavelength is λ = 3mm, and the 3-dB beamwidth is about 3.0 deg
in elevation and azimuth. The antenna scans across the angular
range of 360 deg at a scan frequency of about 3 Hz. The range
raw resolution is about 0.32 m at 20 m [5]. The radar is integrated
with the CAS Outdoor Research Demonstrator (CORD): an eight-
wheel, skid-steering all-terrain unmanned ground vehicle (UGV)
(see Fig. 1), which has been employed for the testing and the field
validation of the system. The robot’s sensor suite is completed
by four 2D SICK laser range scanners, a mono-charge-coupled
device (CCD) color camera, a thermal infrared camera, and a
real-time kinematic/differential global positioning system/ inertial
navigation system (RTKDGPS/INS) unit that provides accurate pose
estimation of the vehicle.

The remainder of the paper is organized as follows. Section 2
reports related research in the field, whereas basic principles of
radar sensing are recalled in Section 3. The proposed radar-based
classifier is described in detail in Section 4. In Section 5, the system
is validated in field tests performed with the CORD UGV. Section 6
concludes this paper.

1 For example, http://www.nav-tech.com/Industrial%20Sensors2.htm.
Fig. 1. The CORD UGV employed in this research. The sensor suite is visible,
attached to a rigid frame.

2. Previous work

Considerable progress has been made in recent years in
designing autonomous, navigation systems for unstructured
environments [6]. Progress has also been made in high-level scene
analysis systems [7,8]. In this section, research is organized by
its learning strategy: deterministic (no learning), supervised, and
self-supervised. Estimating the traversability of the surrounding
terrain constitutes an important part of the navigation problem,
and deterministic solutions have been proposed by many, [9–11],
where some features of the terrain including slope, roughness, or
discontinuities are analyzed to segment the traversable regions
from the obstacles. In addition, some visual cues such as color,
shape and height above the ground have also been employed
for segmentation in [12,13]. However, these techniques assume
that the characteristics of obstacles and traversable regions
are fixed, and therefore they cannot easily adapt to changing
environments. Without learning, such systems are constrained
to a limited range of predefined environments. A number of
systems that incorporate supervised learning methods have also
been proposed, many of them in the automotive field and for
structured environments (road-following). These include ALVINN
(Autonomous Land Vehicle in a Neural Network) by Pomerlau [14],
MANIAC (Multiple ALVINN Network In Autonomous Control) by
Jochem et al. [13], and the system proposed by LeCun et al. [15].
ALVINN trained a neural network to follow roads and was
successfully deployed at highway speed in light traffic. MANIAC
was also a neural net-based road-following navigation system.
LeCun used end-to-end learning to map visual input to steering
angles, producing a system that could avoid obstacles in off-road
settings, but did not have the capability to navigate to a goal or
map its surroundings. Many other systems have been proposed
in recent years that include supervised classification [16,17].
These systems were trained offline using hand-labeled data,
thus limiting the scope of their expertise to environments seen
during training. Dima et al. [18] recognized this problem and
proposed using active learning to limit the amount of labeled
data in a mobile robot navigation system. Only recently, self-
supervised systems have been developed that reduce or eliminate
the need for hand-labeled training data, thus gaining flexibility in
unknown environments. With self-supervision, a reliable module
that determines traversability can provide labels for inputs to
another classifier. Using this paradigm, a classifier can be trained
online using data from the reliable sensor (such as laser or
vision). An example can be found in Milella et al. [19], where a
visual classifier was trained by radar-driven labels. Brooks and
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Iagnemma [20] proposed a self-supervised framework that
predicts the mechanical properties of distant terrain based on
a previously-learned association with visual appearance. Self-
supervised learning helped win the 2005 DARPA Grand Challenge:
the winning approach used a probabilistic model to identify
road surface based on color information extracted immediately
ahead of the vehicle as it drives [2]. Stavens and Thrun [21]
used self-supervision to train a terrain roughness predictor.
An online self-supervised learning was used to train a lidar-
based navigation system to predict the location of a load-
bearing surface in the presence of vegetation [22]. Recently Kim
et al. [23] proposed an autonomous off-road navigation system
that estimates traversability in an unstructured, unknown outdoor
environment.

In this paper, a self-learning classifier using radar features
is proposed for scene segmentation. A set of radar features for
ground identification is introduced; then, these features are used
to classify the scene into ground and non-ground regions. In order
to automatically train the classifier, a self-learning approach is
adopted, where the system is able to construct the ground model,
using radar information only. A ground model updating procedure
is also implemented to continuously re-train the classifier, so
that variations in ground type and appearance can be taken into
account.

While a lot of work has been done in the context of scene
classification using laser and vision systems, relatively limited
research has been devoted to investigate explicitly millimeter-
wave radar for short-range perception and three-dimensional
terrain mapping. For example, in previous research a millimeter-
wave radar-based navigation system detected and matched
artificial beacons for localization in a two-dimensional scan [24].
Pulsed radar with a narrow beam and high sampling rate produced
dense three-dimensional terrainmaps [25]. However, the resulting
sensor size is excessive for most robotic applications. Millimeter-
wave radar has been used on a large AGV for cargo handling [26];
the radar is scanned horizontally, and measures range and bearing
to a set of trihedral aluminum reflectors. The reflectors may be
covered by a polarizing grating to enable discrimination from
other objects. Radar capability was demonstrated in an Arctic
environment [27] and for mining applications [28]. Mullane
et al. [29] used a MMW radar for occupancy mapping within
a probabilistic framework. The ability of radar to perceive the
environment in low visibility conditions was demonstrated in
numerous papers, for example in [30,31]. This aspect is not
explicitly considered in the context of this paper.

3. Radar-based perception

Current development of short range radar imaging is an
active research area. MMW radar scanning is generally performed
mechanically in 2D sweeps with a resolution that is typically
limited to 1–3 deg in azimuth and elevation, and 0.25 m in
range, as determined by the antenna aperture and available
bandwidth. Higher angular resolution can only be obtained with
inconveniently large antenna apertures, and downrange resolution
has hardware limitations, although interpolation techniques have
been applied to improve it for point targets. This makes it difficult
to generate elevation maps since objects of different heights are
illuminated at the same time and it prevents the use of geometric
or shape algorithms, such as those commonly used with lasers. In
general, the ‘‘alternate’’ image of the scene provided by the radar
may be difficult to interpret because its modality, resolution, and
perspective are very different from visual images. Furthermore,
radar propagation to some extent and particularly scattering is
different from those of optical-based sensors, such as laser, stereo,
or sonar; thus existing sensormodels are inadequate. For example,
Fig. 2. A millimeter-wave radar mounted on a robot with a fixed nodding angle
can be used to survey the surrounding environment.

laser sensors most commonly return the range to the first, last or
highest intensity target detected along the beam. Due to the highly
collimated beam emission, this corresponds to a small, precisely
located region of occupied space in the environment. In contrast,
radar provides the reflected power amplitude along the beam, i.e., a
single return contains information from multiple targets, mainly
due to thewider beamwidth (about 2–3 deg comparedwith 0.1 deg
for the laser). Due to the larger beamwidth, radar returns must be
interpreted as arising from the interaction of the beamwith a finite
but relatively large region of the environment. Returned images
represent the convolution of the environment with the emission,
so it is more complicated to infer the structure of the environment
from the return. In the proposed configuration, the radar is directed
at the front of the vehiclewith a constant nodding angle to produce
a grazing angle γ of about 11 deg, so that the center of the beam
intersects the ground at a look-ahead distance of approximately
11.4 m in front of the vehicle, as shown in the explanatory scheme
of Fig. 2. The origin of the beam at the center of the antenna is O.
The proximal and distal borders of the footprint area illuminated
by the divergence beamare denotedwith A and B, respectively. The
height of the beam origin with respect to the ground plane is h, the
slant range of the radar bore sight is R0, and the scan angle is α.

In such a configuration, with a single sweep of 360 deg,
the sensor produces an intensity map or radar image of the
environment in front of the robot. As an example, a radar image,
acquired from a large, relatively flat area, is shown in Fig. 3.
The abscissas in Fig. 3(a) represent the scan angle with an
effective horizontal field of view (HFOV) of about 120 deg. The
ordinates represent the range measured by the sensor. Amplitude
values above the noise level suggest the presence of objects with
significant reflectivity or radar cross section, e.g. a large object that
is not very reflective such as the ground will show up, or a small
highly reflective object such as a corner reflector will also show up.
Amplitude close to or below the noise level generally corresponds
to the absence of objects. In this configuration, a radar image can
be thought of as composed of a foreground and a background.
The background is produced by the ground echo, i.e., the intensity
return scattered back from the portion of terrain that is illuminated
by the sensor beam. The ground echo typically appears as a
high-intensity parabolic sector (see Fig. 3(a)). Radar observations
belonging to the background show a wide pulse produced by the
high incident angle to the surface. Conversely, obstacles present in
the foreground appear as high-intensity narrow pulses. The ability
to automatically identify radar data pertaining to the ground and
to obstacles present in a scene and project them onto the vehicle
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Fig. 3. A sample radar image acquired from a large, flat area: scan angle-range image (a). Camera image approximately colocatedwith the radar (b). Note the rich information
content of the radar map due to its ability to sample reflectivity at multiple ranges for a single scan angle. Please refer to the online version of the paper for a color view of
the radar image.
Fig. 4. Simulated power return of the ground echo for a given scan angle: the
following parameters were adopted in the simulation: k = 70 dB, R0 = 11.3 m,
h = 2.2 m, γ = 11 deg.

body framewould result in an enabling technology for all visibility-
condition navigation systems.

In previous research by the authors, a theoretical physics-based
model of the ground echo was developed along with a method to
automatically extract the background from radar images based on
an edge-detection strategy. Following this approach, the portion
of the radar signal acquired at a given scan angle pertaining to the
background can be isolated and compared against the theoretical
model to assess its membership confidence to the ground or non-
ground class, as explained later in the paper.

We recall the important properties of the model and refer the
reader to [31] for more details. The power return of the ground
echo for a given scan angle can be expressed as a function of the
range R

Pr(R) = k
G(R, R0)

2

cos γ
(1)

where k is a constant quantity,R0 is the slant range,G is the antenna
gain (usually modeled as Gaussian) and γ is the grazing angle,
as explained in Fig. 2. Fig. 4 shows a simulated wide pulse of the
ground return using (1).

4. Self-learning classification

In the following, ‘‘self-learning classification’’ refers to auto-
matic training of a radar-based ground classifier. Whereas in a
traditional (i.e. manually) supervised classifier a human user pro-
vides labeled training examples for each class of interest, in a
self-learning framework these training examples are automatically
produced. In the context of this paper, a self-learning approach is
proposed based on a rolling training set. The training set is au-
tomatically initialized at the beginning of the robot’s operation
via a bootstrapping approach and progressively updated. In every
newly-acquired radar scan, the latest training set is used to train
the classifier. The task is that of generalizing from training data to
unseen situations to identify single new observations as ground
or non-ground. Initially, the rover has no knowledge of the rela-
tionship between ground appearance and the ground class. The
only underlying assumption to initialize the training set is that
the vehicle starts its operation from an area free of obstacles, so
that the radar initially ‘‘looks’’ at ground only. Features can be ex-
tracted from background returns and associated with the ground
class. Pairs of ground class labels and associated radar features are
stored in memory. When sufficient data is accumulated, the radar-
based ground classifier can be trained, and ground labels are re-
lated with radar properties. This allows the system to predict the
presence of ground in successive scenes based on past observa-
tions. Such a classification task is generally difficult as the ground
echo is affected by a number of factors that are not easily mea-
sured and change over time, including the type of terrain surface,
topology, etc. This suggests that an adaptive approach is necessary
in which the image interpretation changes as the vehicle moves
and conditions vary. To this aim, the model (i.e., the training set) is
continuously updated using the most recent radar readings. Self-
learning systems eliminate the need for hand-labeled training data,
thus gaining flexibility in unknown environments. Not only is the
burden of hand-labeling data relieved, but the system can robustly
adapt to changing environments on-the-fly.

4.1. Radar features

The appearance of ground is constructed upon a set of intensity
and shape features that are obtained by fitting the ground model
expressedbyEq. (1) to radar data. Theunderlyinghypothesis is that
a goodmatch between the parametricmodel and the experimental
data attests to a high likelihood of ground. Conversely, a poor
goodness of fit suggests low likelihood due, for example, to the
presence of an obstacle, or highly irregular or occluded terrain. We
recall that Pr(R) is a function defined by the parameters R0 and k. k
can be interpreted as the power return at the slant range R0 and
it is chosen as the first feature defining the ground appearance.
Both parameters R0 and k can be estimated by data fitting for
the given scan angle. A non-linear least squares approach using
the Gauss–Newton–Marquardt method is adopted for data fitting.
Output from the fitting process are the updated parameters R0 and
k, as well as an estimate of the goodness of fit. The coefficient of
efficiency was found to be well suited for this application [32], and
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Fig. 5. Feature generation by model fitting: (a) good fit with high confidence in ground, (b) poor fit with low confidence in ground, (c) seemingly good fit with a high value
of shape factor.
it is chosen as the second feature for our model

E = 1 −


(t − y)2
(t − t̄)2

(2)

t being the data point, t̄ themeanof the observations, and y the out-
put from the regression model. E ranges from −∞ to 1, as the best
possible value. Typical results are shown in Fig. 5. Specifically, in
Fig. 5(a), the model matches very well the experimental data with
a high coefficient of efficiency E = 0.98 and k = 74.89 dB, thus
attesting to high confidence of ground. Conversely, Fig. 5(b) shows
an example where the goodness of fit is poor (E < 0); for this case
a low confidence in ground echo is expected. Nevertheless, rely-
ing on these two features only may be misleading in some cases.
Fig. 5(c) shows an example where a radar observation appears as
a ground label due to the high coefficient of efficiency (E = 0.91),
when there is actually no ground return. In order to solve this issue,
a shape factor can be defined as

S =

 I0 − Iend
I0

 (3)

where I0 and Iend are the initial and final intensity value of the
ground echo. Our hypothesis is that a normal ground echo should
have similar initial and final intensities due to the physical inter-
action between the radar emission and the ground. A high value
of S (for example S = 80.7% in Fig. 5(c)) indicates a discrepancy
and suggests low confidence that the signal is an actual ground
echo.

In summary, three main features define the ground model: the
intensity associated with the slant range, k, the goodness of fit, E,
and the shape factor, S. This set of features expresses our physical
understanding of the problem and we believe that it is a good
descriptor of the ground appearance. However, this feature set is
not unique and new features may be conceived and implemented
to further improve the model. In previous work [33], similar
features were used in a form of logical ‘‘expert system’’, with
manually tuned thresholds to classify ground returns. In this work,
they are used within a self-learning classification framework.

4.2. Algorithm description

The ground modeling problem is formulated as a one-class
classifier [34]. One-class classification techniques are particularly
useful in the case of two-class classification problems where one
class, referred to as the target class, is well-sampled, while the
other class, named the outlier class, is under-samples or difficult
to model. This is the case for our application where most of the
radar background readings are reflected by ground with sparse
instances of non-ground. Typically, the objective of a one class-
classifier is that of constructing a decision boundary that separates
the instances of the target class from all other possible objects. In
our case, ground samples constitute the target class, while non-
ground samples are regarded as the outlier class. Nevertheless,
in open rural environments non-ground samples are typically
sparse; in addition, the variation of all possible non-ground classes
is unlimited. That makes it difficult to model the non-ground
class, whereas, although it changes geographically and over time,
the ground class is generally less variable than random objects.
Furthermore, our objective is that of building a model of the
ground. Therefore, it is reasonable to formulate the problem as a
distribution modeling one, where the distribution to estimate is
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the ground class. Specifically, we adopt a multivariate Gaussian
distribution to model positive ground samples. A Mahalanobis
distance-based classifier [35] can be applied to estimate the
membership likelihood of a given observation to the ground class
following an outlier detection strategy. Looking at theMahalanobis
distance (MhD) and its distribution, it is possible to predict if this
radar reading has an extremely low probability of belonging to
ground and may be suspected to be an outlier.

Let Xt be an n × m data table representing a sample of xi
vectors with i = 1, 2, . . . , n, each characterized bym traits (scalar
features, m = 3 in our case): Xt = {x1, . . . , xn}. These vectors
constitute the training set at a given time t . If we compute the
sample mean µt and the sample covariance Σt of the data in
Xt , we can denote the ground model at this time as Mt(µt , Σt),
where µt describes the location, and Σt the scale (shape) of the
distribution. Then, in the next radar scan acquired at time t+1, the
single newobservation z can be classified by estimating its squared
Mahalanobis distance from the ground model:

d2 = (z − µt)Σ
−1
t (z − µt)

t . (4)
Assuming that the vectors xi are independent and have Gaussian
distribution, it can be proved that the squared Mahalanobis
distance is asymptotically distributed as them degrees of freedom
chi-square distribution χ2

m. Then, we can use the quantile β
of the m degrees of freedom chi-square distribution as the
delimiter (cutoff) for outlying observations. Letβ denote a constant
probability level: 0 < β < 1. Let us denote χ2

m;β the appropriate
quantile of the distribution. Then, it holds

p(d2 ≥ χ2
m;β) = 1 − β (5)

which means that values of d2 greater than (or equal to) the value
χ2
m;β appear with a probability equal to 1 − β . Now we define the

cutoff for the Mahalonobis distance as

Lβ =


χ2
m;β . (6)

Any radar observation with Mahalanobis distance d satisfying the
inequality d ≥ Lβ maybe suspected to be anoutlier. In otherwords,
the pattern is an outlier, i.e. defined as a non-ground observation, if
d2 is greater than a threshold, which is computed as the β quantile
χ2
m;β of them degrees of freedom chi-square distribution.
At the beginning of the robot’s operation, the training set is

initialized under the assumption that the vehicle starts from an
area free of obstacles, so that the radar ‘‘looks’’ at ground only.
Successively, the ground model is updated as the vehicle moves:
new ground feature vectors labeled in the most recent radar scans
are incorporated, replacing an equal number of the oldest ground
instances. The size of the rolling window is kept constant (i.e., n =

250 in our case). If we denote with Zt+1 = {z1, z2, . . . , zl} the set of
l ground-labeled returns classified at time t + 1, then the training
set for the next radar scan is obtained as
Xt+1 = {(xl+1, . . . , xn), Zt+1}. (7)
As an example, Fig. 6 shows how the classifier works in a sample
radar scan where we assume β = 0.992. The model of ground
appearance is built upon the most recent rolling training set
(marked by black dots) and represented in Fig. 6 by a gray Gaussian
ellipsoid. The radar returns acquired in the current scan are
classified based on their MhD. Outlined circles denote ground-
labeled readings; non-ground labels are denoted by black crosses.
Note that for the reader’s sake, only the plane E−k of the 3D feature
space is shown.

5. Experimental results

In this section, experimental results are presented to validate
our approach for scene segmentation using radar data. The system
was integrated with the CORD UGV (see Fig. 1) and tested in
Fig. 6. Output of the radar-based classifier for a sample scan.

Fig. 7. Aerial view of theMarulan test field with overlaid path followed by the UGV
during the experiment.

a rural environment at the University of Sydney’s test facility
near Marulan, NSW, Australia. Fig. 7 shows a low resolution
aerial view of the test field featuring three wooden buildings:
one long building stands on the southern side, whereas two
smaller ones are on the northern side of the area. Two stationary
cars are also present on the eastern side and south-western
side, respectively. The whole area is bounded by a fence and
is characterized by relatively flat ground with sparse low grass.
During the experiment, the CORD vehicle was remotely driven
with an average speed of about 0.5 m/s and a maximum value
of 1.5 m/s. Variable yaw rates were achieved with a maximum
of 1.12 rad/s (64 deg/s) and roll and pitch angles of up to 4 deg.
The RTK DGPS/INS unit and a high-precision 2D SICK laser range
scanner provided the ground truth with an average standard
deviation per point of approximately 0.053 m (more details can be
found in [36]). The full data set is public and available online [37].
The path followed by the robot is overlaid over the aerial image of
Fig. 7 as estimated by the onboard RTK DGPS-INS unit. It resulted
in a total distance of 170 m traveled in about 5 min.

5.1. Scene segmentation

Figs. 8–12 show some typical results obtained from the
classifier during the experiment. It should be noted that the
system is conceived to classify data that belong to the radar image
background. In addition, obstacles present in the foreground can
also be detected and ranged independently as high-intensity peaks.
Fig. 8 refers to the bootstrapping process during which the ground
model is initialized. The robot starts its operations from an area
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a b

c

Fig. 8. Bootstrapping process to build the initial model of the ground class: (a) training examples in the radar image marked by black points (green points in the online
version of the paper), (b) projected over the camera image, (c) and on the laser-generated map. Note that in this stage the HFOV of the radar is reduced to 90 deg to enforce
the assumption of returns scattered back from the ground. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
Fig. 9. Results obtained from the radar-based classifier for a scenario delimited by two lateral buildings and a frontal car: (a) output of the system, (b) results overlaid on
the camera image, (c) and on the laser-generated ground-truth map. Note that the map is referred to the vehicle reference frame. Black (green) dot: classified ground. Black
cross: classified non-ground. Black (red) triangle: foreground obstacle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 10. Results obtained from the radar-based classifier for a scenario where the robot faces the long wooden building: (a) output of the system, (b) results overlaid on
the camera image, (c) and on the laser-generated ground-truth map. Black cross: classified non-ground. Black (red) triangle: foreground obstacle. Note that no ground was
classified in this particular scan. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Results obtained from the classifier for a scenario where one of the small buildings stands to the right of the robot: (a) output of the classifier, (b) results overlaid on
the camera image, (c) and on the laser-generated ground-truth map. Black (green) dot: classified ground. Black cross: classified non-ground. Black (red) triangle: foreground
obstacle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Results obtained from the classifier for a scenario with a car to the left of the robot: (a) output of the system, (b) results overlaid on the camera image, (c) and on
the laser-generated ground-truth map. Black (green) dot: classified ground. Black cross: classified non-ground. Black (red) triangle: foreground obstacle. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
that is clear of obstacles. Radar observations belonging to the
background can be reasonably used as good training examples for
the first model of ground (Fig. 8(a)). The same training ground
points are projected over the image plane of the camera, which
is approximately collocated with the radar and over the laser-
generated map in Fig. 8(b) and (c), respectively, for visualization
purposes. The classifier is initialized by acquiring a few scans (s =

8, in our case) during a 3-s window.
After the training stage, the radar-based classifier can be used to

predict the presence of ground in successive scans. As an example,
Fig. 9 refers to the instant T1 = 47 s when the vehicle moves
toward the eastern area of the path, which is delimited by two
lateral buildings with a car in front of the robot. Fig. 9(a) shows
the radar intensity image overlaid with the results obtained from
the radar-based classifier. Ground labels are denoted by black dots
(or by green dots in the online version of the paper), a black cross
marks non-ground, and obstacles detected in the foreground as
high-intensity narrow pulses are denoted by a black (red) triangle.
In Fig. 9(b), the results are projected over the image plane of
the camera for visualization purposes only. Note that only the
observations common to the field of view of both sensors are
shown. Finally, a comparison with the laser-generated ground
truth is provided in Fig. 9(c), which demonstrates the effectiveness
of the proposed approach for ground segmentation. As can be
seen from these figures, the classifier correctly detects the frontal
obstacle and the side walls. The terrain surrounding the car is also
successfully identified. Fig. 10 shows a different scenario at time
T2 = 54 s where the robot faces the long building occluding the
whole field of view of the radar. The classifier successfully flags
the presence of the obstructing wall returning no ground labels
from the background. A similar scene is shown in Fig. 11 at time
T3 = 172 s, when the radar field of view is partially obstructed
by one of the small buildings. The classifier correctly detects the
presence of the large obstacle to the right and of ground to the
left. Finally, Fig. 12 shows a scenario at time T4 = 210 s with a
stationary car to the left of the robot. The system is successful in
labeling the ground and the obstacles present in the scene.

Overall, the radar-based classifier was tested over 778 radar
images, each containing 63 azimuth observations for a total of
48,960 classifications. In order to provide a quantitative evaluation
of the system performance, we measured the true positive and
false positive rates of the classifier for the radar observations
that fall within the camera field of view and that we can hand-
label by visual inspection (i.e., ground truth). A Receiver Operating
Characteristic (ROC) curve was constructed by adjusting the cutoff
value for terrain detection (i.e., by varying the β-quantile value in
the range [0; 1], see Section 4.2). The ROC curve for the proposed
classifier is shown in Fig. 13 denoted by a black line. It plots the true
positive rate (the fraction of ground patches which were correctly
classified as ground) on the y-axis against the false positive rate
(the fraction of non-ground samples, which were erroneously
classified as ground by the system) on the x-axis. A diagonal line
at 45° (shown by a black dash–dotted line in Fig. 13), known as
the line of chance, would result from a classifier which allocated
observations randomly.

In order to establish the optimal threshold value or cutpoint
for the Mahalanobis distance-based classifier, we can use the
ROC curve. In general, a good cutpoint is one which produces a
large true positive rate and a low false positive rate. An intuitive
method, therefore, is to maximize their difference according to
what is usually referred to as the Youden index [38], which can
be interpreted as choosing the point on the ROC curve with the
largest vertical distance from the diagonal line of chance. This
approach assumes that true positive rate and false positive rate are
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Fig. 13. ROC curve for the radar-based classifier. Solid black line: adaptive
algorithm.Gray dashed line: static algorithm. Black dash–dotted line: line of chance.

equally important, weighting evenly the algorithm’s performance
on positive and negative examples. For this reason, the Youden
index was preferred over other alternatives, for example, the
F-score that is a composite measure which benefits algorithms
with higher sensitivity and challenges algorithms with higher
specificity [39]. In our system, the point of maximum difference
between the true positive rate and the false positive rate is reached
atβ = 0.992, and it corresponds to a true positive rate of 88.0% and
a false positive rate of 11.9%. For this point, the overall accuracy,
i.e. the fraction of correct detections with respect to the total
number of classifications, is of 87.8%.

The performance of a ground classifier greatly depends on the
accuracy of the model adopted for the ground. The best choice
of ground model is tightly connected with the environmental
conditions in which the system is used. For example, a ‘‘static
model’’, built upon the initial geometric and intensity properties
of the ground, could soon fail or give poor results because of
changes in ground properties during vehicle travel. Here, an
adaptive approach is proposed that allows the ground model to be
updated online. In every scan the radar-labeled observations are
added to the model replacing an equal number of oldest readings
in order to adapt the system to the latest properties of terrain
and to ensure robustness to changing environments. To evaluate
the efficacy of the model adaptability, a static model was also
constructed, whereby the initial appearance model built during
the bootstrapping process was fixed and not further modified. The
advantage of using an adaptive learning approach with respect to
a batch training system can be shown by comparison with the
ROC curve of the classifier without the ground model update. The
ground model was constructed at the beginning of the sequence,
and was never updated. The ROC curve of the ‘‘static’’ classifier
is denoted by a gray dashed line in Fig. 13. The comparison
between the two implementations can be performed in terms of
the total area under the curve (AUC). The larger the AUC, the better
the overall performance of the test to correctly identify ground
and non-ground observations. Therefore, the adaptive algorithm
outperforms the static one, and the curve is closer to the perfect
discrimination.

5.2. Mapping

The accuracy of the radar-based classifier in mapping the
surrounding environment was assessed through comparison with
the ground-truth laser data. It should be recalled from Section 3
that when a single radar observation i is successfully labeled as
ground, an estimate of its range distance R0,i is also returned by the
fitting process. When combined with the localization estimation
of the vehicle, this provides a 3D georeferenced position for the
labeled point Pi that can be compared to the closest neighbor of the
ground truth map Pgt
i . To this aim, a previously proposed method

for segmentation of laser data (GP-INSAC; [7]) was applied to the
ground-truth map to extract the true ground and true obstacles.
Since the laser-generated map is available as a regularly-sampled
grid with square cells of 0.3 m where the center of the grid
represents the average height of the cell points, a mean square
error in the elevation can be defined as

Ez =
1
g

 g
i=1

(Pz,i − Pgt
z,i)

2. (8)

In this experiment, the radar ground classifier system detected
ground returns in g = 29, 757 observations with an error of
Ez = 0.055 m and an associated variance of σz = 0.003 m2. If the
value of R0 is measured conventionally referring to the intensity
peak of the radar observation, the error grows to Ez = 0.281 m
and σz = 0.221 m2, respectively.

The obstacles present in the foreground of the radar image can
also be ranged by referring to the peak of the associated narrow
pulse. The accuracy of the system in measuring the position of
foreground obstacles can be evaluated as well by comparison with
the nearest datum in the true laser obstacle map. A mean square
error can be defined this time as

Exy =
1
o

 o
i=1

(Px,i − Pgt
x,i)

2 + (Py,i − Pgt
y,i)

2. (9)

The systemmeasured o = 4817 foreground obstacleswith an error
of Exy = 0.045 m and a variance of σxy = 0.0014 m2, respectively.

For a complete overview of the system performance, the results
obtained from the system over the entire experiment are used to
build amap of the environment, as shown in Fig. 14(a). The ground
labeled-observations and the foreground obstacles are denoted by
grayscale dots colored according to the elevation (or by green and
red dots, respectively, in the online version of the paper). The path
followed by the robot is also shown by a solid black line. Fig. 14(b)
depicts the same data after a post-processing step applying a
Delaunay triangulation. Finally, in Fig. 14(c) the laser-generated
map is shown for comparison using the same color scale and
Delaunay triangulation. This figure demonstrates that the system
is capable of providing a clear understanding of the environment,
suitable for robotic applications including scene interpretation and
autonomous navigation.

6. Conclusions

In this paper, a self-learning classifier was described for scene
segmentation by an autonomous vehicle using MMW radar. Ex-
perimental results obtained using an UGV in a natural scenario
validated the proposed approach showing good classification per-
formance with a true positive rate of 88.0% and a false positive
rate of 11.9%. In addition, the system provided range estimation of
the ground-labeled data with 0.055-m accuracy, which is a con-
siderable improvement over the reference of 0.281 m obtained
following the standard highest intensity-based approach. Overall,
the radar-based classifier led to the following main advantages:
(a) enabling technology for all-visibility condition navigation sys-
tems, (b) self-learning training of the classifier, where the radar
allows the vehicle to automatically acquire a set of ground sam-
ples, eliminating the need for time-consuming manual labeling,
(c) continuous updating of the system during the vehicle’s oper-
ation, thus making it adaptive and feasible for long range and long
duration navigation applications, and (d) accuracy improvement
in range estimation. This technique can be successfully applied to
enhance perception for autonomous off-road vehicles in natural
scenarios or more generally for ground-based MMW radar terrain
sensing applications.
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Fig. 14. Classification results for the entire experiment: (a) radar-generated map,
shown as raw data obtained from the classifier. Grey (green) point: classified
ground. Black (red) point: foreground obstacle. (b) Same radar data after Delaunay
triangulation, (c) laser-generated ground-truth map after Delaunay triangulation.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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