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Abstract-A long range visual perception system is presented 
based on a multi-baseline stereo frame. The system is intended 
to be used onboard an autonomous vehicle operating in natural 
settings, such as an agricultural environment, to perform 3D 
scene reconstruction and segmentation tasks. First, the multi­
baseline stereo sensor and the associated processing algorithms 
are described; then, a self-learning ground classifier is applied 
to segment the scene into ground and non-ground regions, using 
geometric features, without any a priori assumption on the terrain 
characteristics. Experimental results obtained with an off-road 
vehicle operating in an agricultural test field are presented to 
validate the proposed approach. It is shown that the use of a 
multi-baseline stereo frame allows for accurate reconstruction 
and scene segmentation at a wide range of viewing distances, thus 
increasing the overall flexibility and reliability of the perception 
system. 

I. INTRODUCTION 

Stereovision is a widely adopted sensorial input for outdoor 
autonomous vehicles, as it provides an effective technique to 
extract range information and perform complex scene under­
standing tasks [1]-[5]. Nevertheless, the accuracy of stereo re­
construction is generally affected by various design parameters, 
such as the baseline [6]-[8]. A larger baseline decreases the 
common field of view of the two cameras, but it leads to 
higher accuracy at each visible distance. A long baseline also 
requires a larger disparity search range, which implies a greater 
possibility of false matches. Hence, the choice of the optimal 
baseline results from the balance of opposing although equally 
important factors. 
In this paper, a multi-baseline stereo frame is proposed, which 
allows an autonomous vehicle operating in natural settings, 
such as an agricultural environment, to perform accurate 3D 
scene reconstruction and segmentation in a wide range of 
distances. The system was implemented within the project 
Ambient Awareness for Autonomous Agricultural Vehicles 
(QUAD-AV) funded by the ERA-NET ICT-AGRI action, 
aimed to enable safe autonomous navigation in high-vegetated, 
off-road terrain [9]. The developed stereo frame is shown 
in Figure 1. It is composed by two trinocular heads, one 
featuring a short baseline system and the other one featuring 
a long baseline system. By employing the narrow baseline 
to reconstruct nearby points and the wide baseline for more 
distant points, this system takes the advantage of the small 
minimum range of the narrow baseline, while preserving the 
higher accuracy and maximum range of the wide baseline 
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configuration. The two trinocular cameras can be either used 
simultaneously to widen the overall perception range of the 
vehicle, or alternately depending on the vehicle travel con­
ditions. For instance, the narrow baseline configuration is 
useful in low-speed operations, where less noisy measurements 
are needed, while the wide baseline is suitable when the 
vehicle travels at higher speed, enabling it to perceive far away 
obstacles [8]. In addition, the wide baseline can improve the 
quality of the stereo range data for distant terrain mapping [10]. 
Therefore, the use of a multi-baseline stereo frame allows one 
to get good results at a wide range of viewing distances, and 
to increase the overall flexibility and reliability of the system. 
The 3D point cloud returned by either trinocular camera 
provides a rich source of information for the vehicle to perform 
key navigation tasks, such as terrain identification and scene 
segmentation. In this investigation, stereo reconstructed points 
were used as input data to a geometry-based classifier that 
segments the scene into ground and non-ground regions. This 
classifier features a self-learning framework [11], where the 
ground model is automatically built during an initial boot­
strapping stage and is continuously updated to incorporate 
changes in the ground appearance. During the training stage, 
the classifier learns to associate the geometric appearance of 
data with class labels. Then, it makes predictions based on 
past observations classifying new acquired data. It is worth to 
note that, in the context of this work, the ground class denotes 
points from traversable terrain, whereas the non-ground class 
corresponds to all other data, including points from non­
traversable ground, above ground objects (i.e., obstacles) or 
occluded areas, and poor stereo reconstructions. While most 
of the algorithms proposed in the literature rely on ground 
plane estimation [12]-[15] and perform obstacle detection by 
identifying objects that "stick out" of the ground, in this work, 
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Fig. 1: The multi-baseline stereo vision system. 



Fig. 2: Experimental test bed provided by IRS TEA and used 
for field validation in the QUAD-AV project. 

ground plane reasoning is not explicitly needed and the system 
automatically adapts to the changing geometry of the terrain. 
Furthermore, in contrast to previous works that attempt to 
explicitly identify obstacles [1], [16], the proposed approach 
aims at detecting scene regions that are traversable-safe for the 
vehicle. This is a subtle, but significant difference; only those 
regions where there is evidence that it is safe are labeled as 
traversable, thereby avoiding both positive and negative obsta­
cles and non-traversable terrains without explicitly detecting 
them. 
The multi-baseline stereo system was integrated with an off­
road vehicle (see Figure 2) that was made available by the 
partner IRSTEA at the Montoldre farm facility [l7], during an 
experimental campaign in October 2012. The vehicle's sensor 
suite included as well a 3D SICK laser rangefinder, a frequency 
modulated continuous wave (FMCW) radar, and a thermal 
infrared camera. 
The remainder of this paper is organized as follows. Section 
II provides details about the implementation of the multi­
baseline stereo system, including design and calibration issues, 
and stereo processing algorithms. In Section III, the ground 
detection approach is introduced. Experimental results are 
presented in Section IV.  Section V concludes this paper. 

II. MULTI-BASELINE STEREO VISION 

The baseline, i.e., the distance between the optical centers 
of two cameras in a stereo head, is a critical parameter in the 
design of a stereo system. A short baseline makes the point of 
view closer, thus widening the common field of view of the two 
cameras. A long baseline improves the reconstruction accuracy 
and the range resolution (i.e., the smallest change in range that 
is discernible by the stereo system) at all visible distances, at 
the cost of a reduction of the field of view. Furthermore, a 
wide baseline needs wider disparity search range, thus leading 
to an increased possibility of false matches. 
Another critical parameter is the lens focal length: a short 
focal length increases the angular field of view, but induces 
higher distortion. It also increases (i.e., makes worse) the 
range resolution. Lenses with larger focal lengths produce 
images that are zoomed in farther, allowing for the detection of 
distant objects. Nevertheless, the greater the focal length, the 
narrower the field of view. Different combinations of baselines 
and optics should be, therefore, used in different operational 
conditions. For instance, a stereo pair with longer baseline and 
focal length is suitable to detect far objects and should be used 
at high travel speed. At lower speeds, instead, a short baseline 
can be effectively adopted. 

TABLE I: Specifications of the Bumblebee XB3. 

Sensor Three Sony 1/3" progressive sean CCD. Color 

Baseline 12 em and 24 em 

Resolution and FPS 1280 x 960 pixels at 15 FrS 

Focal Length 3.S mm 

Field of View 66deg(H) x 50deg(V) 

TABLE II: Specifications of the custom-built trinocular system. 

Sensor Three Sony ICX267 1/2" CCD. Color 

Baseline 40 em and SO em 

Resolution and FPS 1384 x 1032 pixels at 16 FrS 

Focal Length 12 mm 

Field of View 23deg(H) x 17deg(V) 

In this work, a multi-baseline system is employed to combine 
the advantages coming from different baselines and optics, thus 
improving the system flexibility. In the rest of this section, 
first, details concerning the implementation and calibration of 
the multi-baseline stereo frame used for data acquisition are 
provided, then the stereo processing algorithms for 3D scene 
reconstruction are presented. 

A. Description of the System 

The system comprises two trinocular cameras, featuring 
four baselines, two for each of them, covering the short range 
and the medium-long range, respectively. The system is shown 
in Figure 1. The short range camera is the Bumblebee XB3 
by Point Grey. It consists of a trinocular stereo head with 3.8 
mm focal length lenses, featuring two stereo configurations: a 
narrow stereo pair with a baseline of 0.12 m (XB3-Narrow) 
using the right and middle cameras, and a wide stereo pair 
with a baseline of 0.24 m (XB3-Wide) using the left and 
right cameras. The second trinocular system is custom-built. 
It comprises three identical Flea3 cameras by Point Grey with 
12 mm focal length lenses, disposed in line on an aluminum 
bar to form two baselines: a narrow baseline of 0.40 m (Flea3-
Narrow) using the left and middle cameras and a wide baseline 
of 0.80 m (Flea3 -Wide), using the left and right cameras. 
Additional technical details are provided in Table I and Table 
II for the XB3 and the Flea3, respectively. 

B. Reconstruction Error 

The theoretical percentage error EzJ%) on the reconstruc­
tion in the direction of the camera optical axis (zc-axis) can 
be calculated as: 

where 
Z2 

Ez = 

B S 
c 

F ·corr"Acc 
C 

• tereo 

(1) 

(2) 

being B the baseline, StereoF the focal length in pixels, 
corr Ace the correlation accuracy (i.e., the matching error in 
pixels) [7]. The percentage reconstruction error expressed by 
Eq. (1) and Eq. (2) assuming an image resolution of 640 x 480 

pixels and a correlation accuracy of 0.2 pixels is shown in 
the graph of Figure 3, for each stereo pair of the system. It 
can be observed that the reconstruction accuracy decreases 
with the range and improves at higher baseline and focal 
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Fig. 3: Percentage reconstruction error for the multi-baseline 
system. 

length. Therefore, by combining different baselines and optics, 
it is possible to keep the reconstruction error within a given 
percentage by setting different cutoff distance thresholds for 
each baseline. It should be also noted that for a disparity search 
range of 128 pixels the closest distance along the camera 
optical axis that can be reconstructed by the XB3 camera is 
of about 0.5 m, while it is of approximately 5 m for the Flea3 
system. Hence, using a wide baseline, information in the close 
range is lost, while it can be preserved by adopting a short 
baseline. In addition, a longer focal length moves farther the 
viewpoint and restricts the angular field of view of the system, 
thus making even more significant the loss of information in 
the short range. 

C. Calibration 

Each stereo pair was calibrated using the OpenCV cali­
bration functions [18]. Both intrinsic and extrinsic parameters 
were estimated for each stereo system based on a set of 
images of a planar checkerboard. The calibration functions 
also returned the rectification matrices to rectify the images 
as a preliminary step before applying the stereo matching al­
gorithm. Since the four stereo pairs were calibrated separately, 
an additional calibration step was successively performed to 
align all the systems with respect to a conunon reference 
frame attached to the vehicle. To this aim, the calibration 
pattern was positioned at a known location with respect to the 
vehicle. Then, the position and orientation of each stereo pair 

(a) (b) 

Fig. 4: Sample images acquired during experimentation by the 
Flea3 system (a) and the XB3 system (b). It can be noticed 
that the angular field of view of the XB3 is wider than the one 
of the Flea3 due to the use of a shorter focal length. However, 
the Flea3 image displays more clearly far away objects. 

with respect to the pattern was estimated using the calibration 
functions. Finally, the position and orientation of each stereo 
pair with respect to the vehicle was inferred. 

D. Stereo Processing Algorithms 

Since the two trinocular systems have very different fields 
of view also due to the use of different lenses (see Figure 4 
as an example), we integrate separately the wide and narrow 
baseline of each trinocular camera, so that, in the end, two 
point clouds are obtained: one from the Flea3 system, to be 
used to get accurate information in the long range (approxi­
mately up to 60 m from the vehicle), and the other one from 
the XB3 system to get accurate information in the short range 
(approximately up to 30 m from the vehicle). 
For each stereo pair, the stereo processing algorithm includes 
the following steps: 

• Rectification: each image plane is transformed so that 
pairs of conjugate epipolar lines become collinear and 
parallel to one of the image axes. Using rectified 
images, the problem of computing correspondences is 
reduced from a 2-D to a I-D search problem, typically 
along the horizontal raster lines of the rectified images. 
Rectification matrices are computed in the calibration 
step as described in Section II-C. 

• Disparity map computation: to compute the disparity 
map a stereo block matching algorithm is used that 
finds corresponding points by a sliding Sum of Abso­
lute Difference (SAD) window [18]. 

• 3D point cloud generation in the reference camera 
frame: being the stereo pair calibrated both intrinsi­
cally and extrinsically, disparity values can be con­
verted in depth values and 3D coordinates can be com­
puted in the reference camera frame for all matched 
points. 

• Transformation from the reference camera frame to 
the vehicle reference frame: in this stage 3D points 
are transformed from the camera frame to the vehicle 
frame. 

• Statistical filtering: a statistical filter is applied to 
reduce noise and remove outlying points. 

• Voxelization: in order to decrease the computational 
burden the number of points is reduced using a voxe­
lized grid approach. A 3D voxel grid with a leaf size 
of 10 cm is created over the input point cloud space. 
Then, all the points in each voxel are approximated 
with their centroid. 

The point clouds reconstructed by the narrow pair and by 
the wide pair of each trinocular sensor are fused in a unique 
point cloud: if a point of the scene has been reconstructed by 
both the wide baseline pair and the narrow baseline pair, only 
information coming from the wide baseline is retained, since 
a wider baseline generally assures better accuracy at every 
distance. Figure 5 shows the results obtained for a sample 
scene in the far range (a, b) acquired by the Flea3 system, and 
in the short range (c, d) acquired by the XB3 system. 



(a) (b) 
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Fig. 5: Results of the stereo processing algorithm with selected 
cutoff thresholds in the long range ( a, b) for the F1ea3 system 
and in the short range (c, d) for the XB3 system. 

III. GEOMETRY-BASED GROUND CLASSIFICATION 

Geometry-based ground classification is a method for labe­
ling observations based on their geometric properties. Specifi­
cally, the ground model is constructed upon a set of geometric 
features that can be extracted from stereo reconstruction. The 
proposed approach takes advantage of a self-learning scheme 
where the training instances are automatically produced using 
a rolling training set. 
Self-learning methods have been recently introduced in the 
literature [19]-[21] to provide automatically trained classifiers 
that reduce or eliminate human intervention. In our system, 
the training set is initialized at the beginning of the robot's 
operation via a bootstrapping approach and progressively up­
dated. The only underlying assumption to initialize the training 
set is that the vehicle starts its operation from an area free 
of obstacles, so that the trinocular system initially "looks" 
at ground only. Then, geometric features can be extracted 
from the 3D point cloud and associated with the ground 
class. When sufficient data is accumulated, the geometry-based 
ground classifier can be trained, and the ground class is related 
with point cloud properties. This allows the system to predict 
the presence of ground in successive scenes, based on past 
observations. The model (i.e., the training set) is continuously 
updated using the most recent acquisitions to account for 
variations in ground characteristics during the vehicle travel. 
The single steps of the classification system are described in 
the rest of this section. The reader may also refer to [5] for 
additional information. 

A. Geometric Features 

The raw point cloud obtained by the stereo system is 
divided into a grid of 0.4 x 0.4 m terrain patches projected onto 
a horizontal plane. Geometric features are statistics obtained 
from the point coordinates associated with each terrain patch. 
The first element of the geometric feature vector is the average 
slope of the terrain patch, i.e., the angle e between the 
least-squares-fit plane and the horizontal plane. The second 

component is the goodness of fit, E, measured as the mean­
squared deviation of the points from the least-squares plane 
along its normal. The third element is the variance in the height 
of the range data points with respect to the horizontal plane, 
(J�. The fourth component is the mean height of the range 

data points, h. Thus, the geometric properties of each patch is 
represented as a 4-element vector 

f = [e,E,(J�,hl 

B. Ground Modeling and Classification 

(3) 

The ground modeling problem is formulated as a one-class 
classifier [22]. One-class classification methods are generally 
useful in two-class classification problems, where one class, 
referred to as the target class, is relatively well-sampled, while 
the other class, referred to as the outlier class, is relatively 
under-sampled or difficult to model. This is the case for our 
application where most of the patches belong to the ground 
with sparse instances of non-ground. To model the ground, we 
adopt a multivariate Gaussian distribution to model positive 
ground samples, and we implement a Mahalanobis distance 
classifier [19]. 
Let us consider No ground patterns. The ground pattern i is 
represented by its m-dimensional row feature vector fb, with 
m being the number of feature variables (4 in our case). These 
vectors constitute the training set X, expressed in the form of 
a No x m matrix. If we compute the sample mean j.L and 
the sample covariance � of the data in X, we can denote the 
ground model as M(j.L, �). Then, given a new pattern fnew, 
the squared Mahalanobis distance between fnew and M(j.L,�) 
is defined as: 

(4) 

The pattern is an outlier, i.e. it is defined as a non-ground 
sample, if d2 is greater than a threshold. The latter is computed 
as the a-quantile X;;';c> of the chi-square distribution with 
m degrees of freedom. Note that, in order to update the 
ground class during the vehicle motion, the model M(j.L,�) is 
continuously rebuilt, always using the ground feature vectors 
obtained by the most recent acquisitions. 

I V. EXPERIMENTAL RESULT S 

In this section, experimental results are presented to vali­
date the proposed approach. The multi-baseline stereo frame 
was mounted on the off-road vehicle shown in Figure 2. During 
the experiments, the vehicle was driven by a human operator 
with a travel speed ranging between 10 and 20 km/h, as the on­
board sensors acquired data from the surrounding environment. 
Various scenarios were analyzed including positive obstacles 
(trees, crops, metallic poles, buildings, agricultural equipment), 
negative obstacles (holes, ditches), moving obstacles (vehicles, 
people and animals), and difficult terrain (steep slopes, highly­
irregular terrain, etc.). Then, the proposed classification frame­
work was applied offline. For each data set, the vehicle started 
its operations from an area that was clear of obstacles in order 
to initialize the ground model by acquiring a few frames. After 
the training stage, the stereo classifier was able to predict the 
presence of ground in successive acquisitions. 



A. Stereo Reconstruction 

The results of scene reconstruction performed using XB3 
and Flea3 data for two different scenarios are shown in 
Figure 6 and Figure 7. In order to evaluate the reconstruction 
capability of each system, no cutoff threshold on the range was 
used in these tests. In Figure 6, the scenario presents relatively 
flat ground and a building on the left in the vicinity of the 
vehicle, and buildings and people in the far range. Specifically, 
Figure 6a and Figure 6b show the reference images acquired 
by the Flea3 and XB3, respectively. A 3D view of the point 
clouds returned by each system is shown in Figure 6c and 
Figure 6d. It can be observed that while the Flea3 is able to 
reconstruct also the farthest building located at approximately 
100 m from the vehicle, this building is filtered out in the 
XB3 reconstruction. This can be better seen in the close up 
of the far range reported in Figure 6e and Figure 6f for the 
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Fig. 6: Sample scenario acquired during field experiments: (a) 
reference image of the Flea3 system; (b) reference image of the 
XB3 system; (c) point cloud obtained by Flea3 for the whole 
scene; (d) point cloud obtained by XB3 for the whole scene; 
(e) close up of the long range in the Flea3 reconstruction; (f) 
close up of the long range in the XB3 reconstruction; (g) upper 
view of the close range: RGB points are used for XB3 and 
green points for Flea3 data. It is shown that the Flea3 system 
provides accurate information in the long range while losing 
information in the short range compared to the XB3camera. 

(a) (b) 

(e) (d) 

Fig. 7: Sample scenario acquired during experimentation on 
field: (a) reference image of the Flea3 system; (b) reference 
image of the XB3 system; (c) upper view of the 3D recon­
struction of the building obtained by using Flea3 data; (d) 
upper view of the 3D reconstruction of the building obtained 
by using XB3 data. It can observed that in the long range the 
XB3 produces noisier results with respect to the Flea3 camera. 

Flea3 and the XB3, respectively. Finally, a close up of the 
short range with the two point clouds overlapped is shown in 
Figure 6g, with green points representing the Flea3 point cloud 
and RGB points representing the XB3 point cloud. This figure 
shows that the Flea3 is not able to detect nearby regions as its 
point of view is located farther than the one of the XB3. In 
addition, it has a narrower angular field of view that causes the 
loss of important information on the building on the left of the 
vehicle, which is detected by the XB3 system, instead. These 
considerations justify the need for combining both systems. 
Similar observations can be done for the sample case reported 
in Figure 7. This figure is referred to a scenario with even 
ground in the vicinity of the vehicle, and cars, trees, and 
a building in the medium-far range (see Figure 7a for the 
Flea3 and Figure 7b for the XB3). The better accuracy of 
the Flea3 system in the medium-far range with respect to the 
XB3 can be seen by looking at the results obtained for the 
reconstruction of the building, which was located at a distance 
of approximately 35 m from the vehicle. Specifically, Figure 
7c and Figure 7d show an upper view of the 3D reconstruction 
of the building as obtained by the two stereo systems. As 
expected, the results provided by the XB3 in the long range 
are noisier and have lower range accuracy than those produced 
by the Flea3 system (using the XB3, points belonging to the 
building are reconstructed with a wide range span between 40 
and 60 m). 

B. Ground Detection 

Some typical results obtained from the geometry-based 
classifier during field experiments are shown in Figure 8 
and Figure 9. A scenario with relatively even ground in the 
vicinity of the vehicle and some buildings in the far range 
is shown in Figure 8. Figure 8a refers to the Flea3 system, 
while Figure 8b refers to the XB3 camera. In these figures, 
the results obtained from the geometry classifier are projected 
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Fig. 8: Results of geometry-based classifier for a scene with 
low grass, trees and buildings: (a) long range classification 
with Flea3 data; (b) short range classification with XB3 data. 

(a) (b) 

Fig. 9: Results of geometry-based classifier for a scene with 
low grass, trees, buildings, and animals: (a) long range clas­
sification with Flea3 data; (b) short range classification with 
XB3 data. 

over the image plane of the reference camera of each system. 
Points that belong to a cell labeled as ground are denoted by 
green dots, whereas points falling into cells marked as non­
ground are denoted by red dots. As can be seen, the classifier 
correctly segment ground and non-ground regions. The same 
considerations apply to Figure 9 where animals are also present 
in the scene. 

V. CONCLUSION 

In this paper, a multi-baseline stereovision system for 
autonomous navigation in unstructured environments was in­
troduced. The system features a short baseline and a long 
baseline trinocular camera. The former is used to reconstruct 
nearby points, while the latter is employed to reconstruct 
distant points, thus allowing for accurate reconstruction both 
in the near range and in the medium-long range. A self­
learning framework using geometric features extracted by the 
3D stereo data returned by the multi-baseline camera was also 
described. It enables the vehicle to detect traversable ground 
based on a ground model, which is automatically built at the 
beginning of the robot operation and updated during the robot 
travel. Experimental results obtained using a test platform in 
agricultural scenarios were presented to validate the proposed 
system. 
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