

Università del Salento

Facoltà di Ingegneria

Corso di Laurea Magistrale in Ingegneria Meccanica

Tesi di Laurea in Meccanica del Veicolo

STUDIO DI UN SISTEMA DI TRAZIONE INTEGRALE PER UN VEICOLO MOBILE

Relatore:

Ing. Giulio REINA

Laureando: Luca PARISI

Introduzione/1

- In questo lavoro di tesi è stato sviluppato un sistema innovativo, di tipo incrociato, denominato Cross-Coupling Control
- <u>Obiettivo</u>: migliorare l'accuratezza del moto di un veicolo dotato di quattro ruote a trazione e sterzatura indipendente, di tipo over-constrained
- •L'accuratezza del moto del robot è tanto maggiore quanto le velocità effettive delle ruote coincidono con quelle richieste in base al corretto comportamento cinematico
- •Ogni violazione determina slittamento e, di conseguenza, dissipazione di energia ed errori nella stima della posizione del robot
- •Un controllo tradizionale è costituito da loop di controllo reciprocamente indipendenti
- •Profili di carico differenti agenti sulle ruote del rover determinano transitori differenti durante i quali i motori raggiungono i setpoint richiesti in tempi diversi
- •L'assenza di dialogo tra i loop del sistema di controllo determina slittamento e un aumento della potenza richiesta per far muovere il robot

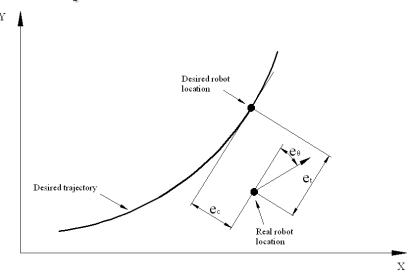
Introduzione/2

Il Cross-Coupling Control confronta ad ogni istante le informazioni di tutti i loop di controllo riducendo la velocità dei motori che ruotano più velocemente e aumentando la velocità di quelli che ruotano più lentamente

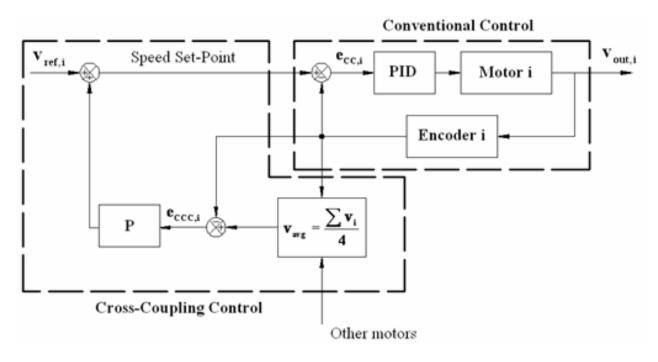
benefici in termini di accuratezza della traiettoria

minimizza i consumi energetici

aumenta l'autonomia del veicolo

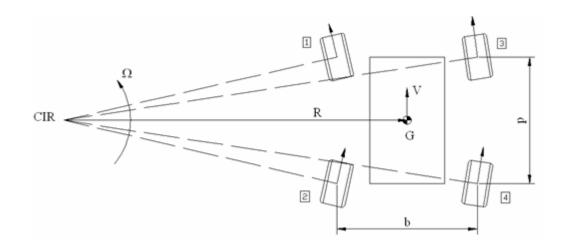


Il rover Dune


Errori nella stima della posizione di un robot

- \mathbf{e}_{θ} è l'errore di orientazione ed è definito come la differenza tra la reale orientazione del robot e quella desiderata
- \mathbf{e}_{c} è definito come la distanza tra la posizione attuale del robot e la posizione desiderata del robot in direzione perpendicolare a quella del moto
- e_t è definito come la distanza tra la posizione attuale e quella desiderata lungo la direzione del moto

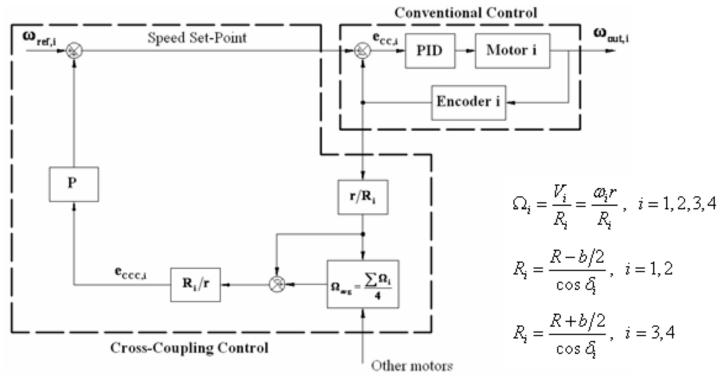
Schema a blocchi del CCC in rettilineo



Il Cross-Coupling Control riceve in ingresso le velocità lineari delle quattro ruote lette dagli encoder, le confronta con la velocità media e lo scostamento della velocità della ruota i-esima dal valore medio è utilizzato per determinare il nuovo setpoint al fine di ottenere la sincronizzazione delle velocità.

Schema a blocchi del CCC in curva (I tipologia)

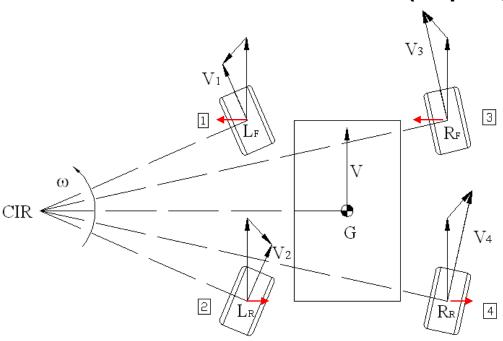
- •Mentre in rettilineo la velocità lineare della ruota attorno al proprio asse deve essere uguale per tutte e quattro le ruote, in curva le ruote esterne ruotano con una velocità angolare maggiore rispetto a quelle interne
- •In curva la grandezza che deve rimanere uguale per tutte le ruote è la velocità angolare del rover attorno al centro di istantanea rotazione, essendo il rover schematizzato come corpo rigido



$$\Omega_i = \frac{V_i}{R_i} = \frac{\alpha_i r}{R_i}, \quad i = 1, 2, 3, 4$$

$$R_i = \frac{R - b/2}{\cos \delta_i}, \quad i = 1, 2$$

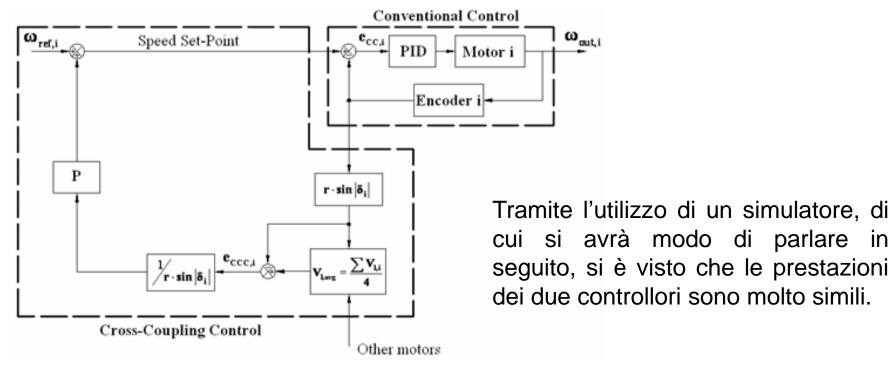
$$R_i = \frac{R + b/2}{\cos \delta_i}, \quad i = 3, 4$$



Il *Cross-Coupling Control* riceve in ingresso le velocità angolari delle quattro ruote lette dagli encoder, le trasforma in velocità angolari Ω_i , le confronta con la velocità media e lo scostamento della velocità della ruota i-esima dal valore medio, trasformato nella velocità angolare ω_i , è utilizzato per determinare il nuovo *setpoint*.

Schema a blocchi del CCC in curva (Il tipologia)

$$\vec{V_1} = \vec{V} + \vec{\varpi} \times (L_F - G)$$

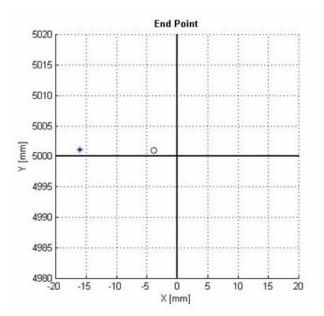

$$\vec{V}_2 = \vec{V} + \vec{\varpi} \times (L_R - G)$$

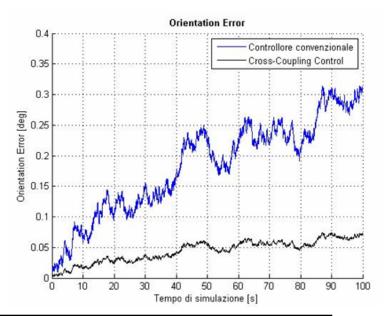
$$\vec{V_3} = \vec{V} + \vec{\varpi} \times (R_F - G)$$

$$\vec{V_4} = \vec{V} + \vec{\varpi} \times (R_R - G)$$

Le componenti laterali delle velocità lineari delle quattro ruote, durante l'esecuzione di un percorso curvilineo, devono essere, in valore assoluto, uguali tra loro.

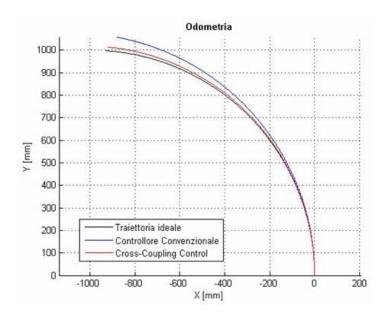
Si è così deciso di implementare la seconda tipologia di controllo in quanto di più facile implementazione poiché è basato unicamente sulla misura della velocità angolare delle ruote ω_i e degli angoli di sterzo δ_i .


Sviluppo del simulatore/1


Al fine di valutare le prestazioni del sistema di controllo è stato implementato in Simulink un prog ortamento del rover e che permette di ne sin validare l'introd ng Contrc 💹 iunta ai comuni el controllari tradizi W2 > u_000_1 Clock u_CCC_2 Velocità lineare [cm/s] Cr_2 > Cr_3 > u_CCC_3 W1_att **→**[]. Cr_4 > Velocità angolare [crad/s] W2_att corrente 1 u_CCC_4 W3_att corrente_3 corrente 4

Sviluppo del simulatore/2

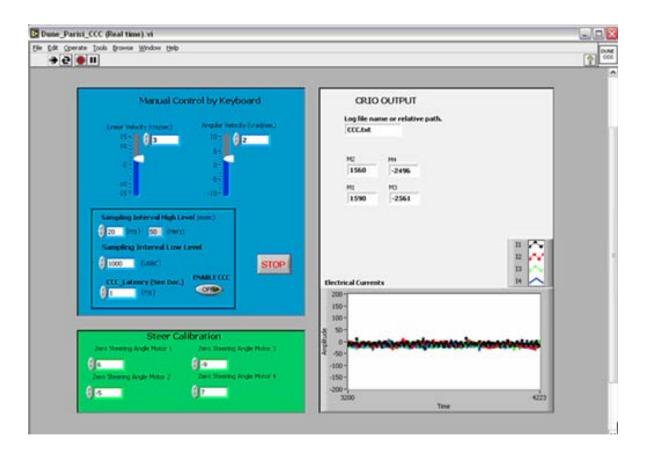
Risultati del simulatore in moto rettilineo



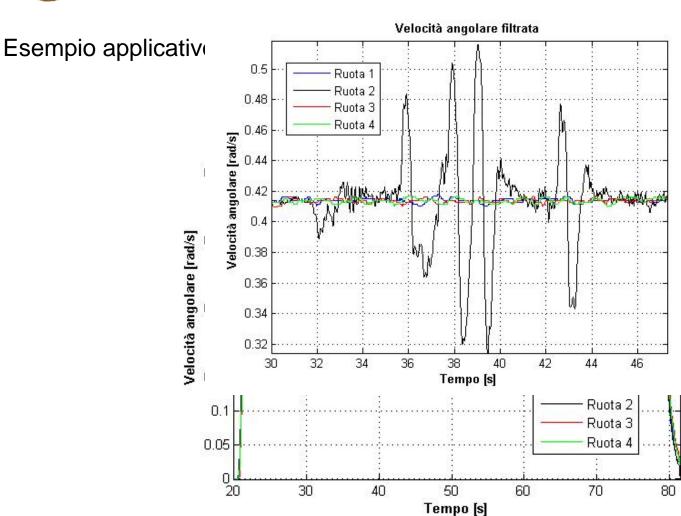
Scorrimenti		
	Controllore convenzionale	Cross-Coupling Control
Ruota 1	1,55%	0,39%
Ruota 2	1,57%	0,39%
Ruota 3	1,58%	0,39%
Ruota 4	1,56%	0,39%

Sviluppo del simulatore/3

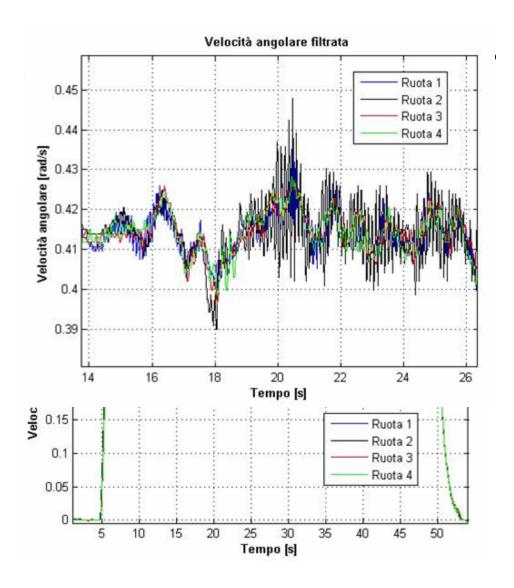
Risultati del simulatore in moto curvilineo


Scorrimenti		
	Controllore convenzionale	Cross-Coupling Control
Ruota 1	2,46%	0.62%
Ruota 2	2,48%	0.62%
Ruota 3	1,97%	0.49%
Ruota 4	1,95%	0.49%

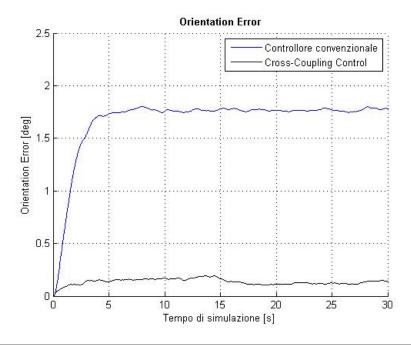
Analisi sperimentale del CCC/1


II Front Panel del file Dune_CCC (Real Time).vi

Il CCC è stato verificato sperimentalmente utilizzando il veicolo Dune programmabile in ambiente Labview



Analisi sperimentale del CCC/2



Analisi sperimentale del CCC/4

Prove sperimentali

Scorrimenti		
	Controllore convenzionale	Cross-Coupling Control
Ruota 1	0,53%	0,17%
Ruota 2	0,93%	0,21%
Ruota 3	0,90%	0,19%
Ruota 4	0,57%	0,21%

Conclusioni

- •Al termine di questo lavoro di tesi sono apparsi evidenti i benefici del Cross-Coupling Control
- •È stato infatti dimostrato, dapprima con l'utilizzo del simulatore e in seguito attraverso prove sperimentali, come l'introduzione del CCC abbia comportato per il rover Dune una riduzione dello scorrimento sulle quattro ruote e una riduzione dello scostamento del veicolo dalla traiettoria desiderata
- •In rettilineo, ad esempio, si è registrato una riduzione di circa il 10% dell'orientation error
- •Gli scorrimenti sulle quattro ruote del rover si sono ridotti invece sino al 50% nel caso di basse velocità di avanzamento
- •Il Cross-Coupling Control si è dimostrato utile per migliorare la mobilità e la capacità di trazione di veicoli autonomi a trazione integrale

Grazie per l'attenzione