
 
 

 

  

Abstract—Ground segmentation is critical for a mobile robot 
to successfully accomplish its tasks in challenging environments. 
In this paper, we propose a self-supervised radar-vision 
classification system that allows an autonomous vehicle, 
operating in natural terrains, to automatically construct online 
a visual model of the ground and perform accurate ground 
segmentation. The system features two main phases: the 
training phase and the classification phase. The training stage 
relies on radar measurements to drive the selection of ground 
patches in the camera images, and learn online the visual 
appearance of the ground. In the classification stage, the visual 
model of the ground can be used to perform high level tasks 
such as image segmentation and terrain classification, as well as 
to solve radar ambiguities. The proposed method leads to the 
following main advantages: (a) a self-supervised training of the 
visual classifier, where the radar allows the vehicle to 
automatically acquire a set of ground samples, eliminating the 
need for time-consuming manual labeling; (b) the ground model 
can be continuously updated during the operation of the vehicle, 
thus making it feasible the use of the system in long range and 
long duration navigation applications. This paper details the 
proposed system and presents the results of experimental tests 
conducted in the field by using an unmanned vehicle. 

I. INTRODUCTION 
UTONOMOUS vehicle operations in outdoor 
environments challenge robotic perception and make 

integration of information from multiple sensors a major 
requirement. Among other sensors, optical devices, either 
active or passive, have proved to be especially effective to 
provide the robot with the ability to understand its 
surroundings and successfully accomplish its tasks.  
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As a type of active imaging sensor, millimeter-wave radars 
have been increasingly used in autonomous vehicle systems, 
since they provide relatively accurate measurements of 
obstacles in low visibility conditions, including the presence 
of dust, fog, and rain. Radar also provides a rich source of 
information allowing for multiple object detection within a 
single beam whereas other range sensors are limited to one 
target return per emission. However, radar has shortcomings 
as well, including large footprint, specularity and reflection 
effects, and limited range resolution, all of which may result 
in poor environment survey or make it difficult to extract 
object features for classification and scene interpretation 
tasks. Consequently, to expand the range of possible 
applications, it is necessary to combine radar with other 
sensors. Video sensors lend themselves very well to this 
purpose. Being passive devices, cameras are affected by 
environmental factors, such as lighting conditions. 
Nevertheless, they generally supply high resolution in a 
suitable range of distances and provide several useful 
features for classification of different objects present in the 
scene. Due to the complementary characteristics of the two 
sensors, it is reasonable to combine them in order to get 
improved performance [1], [2].  

Radar and vision fusion has been discussed mostly in the 
context of driver assistance systems featuring object 
detection and classification modules [1]-[7]. For instance, in 
[1] radar and vision independently detect targets of interest; 
then, a high level fusion approach is adopted to validate 
radar targets based on visual data. A radar-vision fusion 
method for object classification into the category of vehicle 
or non-vehicle is developed in [2]. It uses radar data to select 
visual attention windows, which are then assigned a label and 
processed to extract features to train a Multi-layer In-place 
Learning Network (MILN). In [3], a vehicle detection system 
fusing radar and vision data is proposed. First, radar data are 
used to locate areas of interest on images. Then, vehicle 
search is performed in these areas mainly based on vertical 
symmetry. A guard rail detection approach and a method to 
manage overlapping areas are also developed to speed up 
and improve the performance of the system.  

In this paper, we propose a novel radar-vision 
combination for accurate ground segmentation by an 
autonomous vehicle operating in natural terrain.  

Persistent ground segmentation is critical for a robot to 
improve perception under all conditions, with many 
important applications, including environment classification 
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and scene interpretation. While in structured environments, 
such as in urban contexts, the task of ground identification 
can be effectively performed by exploiting some distinctive 
roadway markings, in natural terrain, no a priori information 
about the ground surface is usually available. Furthermore, 
ground structure and appearance may significantly change 
during the vehicle operation; therefore, road detection 
algorithms based on specific cues are not suitable, unless re-
tuning of road markers or re-training of classifiers is 
performed, generally with human supervision.  

To overcome the limitations of these methods, self-
supervised terrain classification approaches have been 
developed, whereby the output of a sensor is used to train 
another sensor. For instance, in [8], self-supervised terrain 
classification is performed using a previously trained 
vibration-based classifier, which provides labels to train 
online a visual classifier. In [9], data from a stereo camera is 
used to train a monocular image classifier that segments an 
image into obstacle and ground patches in the submodular 
Markov Random Field (MRF) framework. Another notable 
example of self-supervised ground segmentation can be 
found in [10], using a laser scanner and a monocular camera. 
Specifically, the laser is employed to scan for flat, drivable 
surface in the vicinity of the vehicle. Then, this area is 
projected in the camera image and is used as training data for 
a computer vision algorithm to learn online a visual model of 
the road.  

In this work, we exploit a similar concept to develop a 
novel online, self-supervised ground segmentation method, 
using a radar-vision system. The main contribution of the 
proposed approach relies on the combination of a radar-
based segmentation method with a vision-based classification 
system to incrementally construct a visual model of the 
ground during the operation of the vehicle. Specifically, first, 
the radar image is analyzed to identify ground returns; then, 
the radar ground-labeled points are projected in the camera 
image and are used to automatically select and label visual 
ground patches. That results in a self-supervised ground 
modeling system, since visual ground samples are provided 
by radar, thus eliminating the need for time consuming 
manual labeling. In addition, since the ground model can be 

continuously updated based on the most recent radar scans, 
this approach is suited to long range and long duration 
navigation conditions. 

Once constructed, the visual model of the ground can be 
either used to perform high level tasks, such as terrain 
characterization and visual scene segmentation, or to 
supplement the radar sensor by solving radar ambiguities 
deriving from reflections and occlusions.  

The system was validated in the field using the CAS 
Outdoor Research Demonstrator (CORD), an 8 wheel skid-
steering all-terrain unmanned vehicle (Fig. 1(a)). The robot 
sensor suite is shown in Fig. 1(b) including a Prosilica 
Mono-CCD megapixel Gigabit Ethernet camera, pointing 
down (a few degrees of pitch) and a 94 GHz Frequency 
Modulated Continuous Wave (FMCW) Radar, custom built 
at the Australian Center for Field Robotics (ACFR) for 
environment imaging [11]. The camera acquires images of 
1360×1024 pixels, with resolution of 72×72 ppi, and frame 
rate of 10 fps. The radar has maximum range of 120 m, raw 
resolution range of 0.25 m, horizontal FOV of 360 deg, and 
angular scan rate of 3.0 Hz. The robot was also equipped 
with other sensors, including four 2D SICK laser range 
scanners, a thermal infrared camera, and a RTK DGPS/INS 
unit providing accurate position and tilt estimation of the 
vehicle during the experiments. 

The rest of the paper is organized as follows. Section II 
details the developed approach. Experimental results are 
presented in Section III. Conclusions are drawn in Section 
IV. 

II. DESCRIPTION OF THE APPROACH 
Our objective is that of providing an autonomous vehicle, 

operating in natural terrain, with the ability of performing 
precise ground segmentation. Specifically, we propose a self-
supervised method for online ground modeling and 
segmentation using radar and vision data. 

The overall architecture of the system is shown in Fig. 2. 
The processing pipeline takes as input the raw data obtained 
by the radar and the camera, and features two main phases: a 
training phase and a classification phase. The training phase 
takes advantage of a module previously proposed by the 
authors [12], referred to as the Radar Ground Segmentation 

 
(a) 

 
(b) 

Fig. 1.  The CORD UGV employed in this research (a), and its sensor suite (b). 
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(RGS) system. The RGS system can be applied to the radar-
generated image of the environment to detect objects 
belonging to three broad categories, namely ground, non-
ground (i.e., obstacles), or unknown (i.e., occluded areas 
and, more generally, areas for which the RGS system 
generates a low confidence estimate due to radar misreading 
or low resolution). Successively, the radar-labeled ground is 
used to guide the selection of terrain patches in the camera 

image to construct a visual model of the ground. Specifically, 
the radar-centered points labeled as ground are projected in 
the camera image through the camera perspective 
transformation, and are used to define attention windows. 
Their associated sub-images are then processed to extract 
visual features, incorporating the visual appearance of the 
ground, which is finally modelled as a multivariate Gaussian 
distribution. 

In the classification phase, the visual ground model is 
employed to develop a Mahalanobis distance-based one-
class classifier for scene segmentation. The proposed 
approach can be also used to solve radar ambiguities by 
classifying unknown radar returns, through comparison of 
the visual feature vectors extracted from unknown labelled 
visual patches with the ground model. In this sense, the 
visual classifier serves as a supplement to the radar system to 
solve uncertain situations. In addition, using the constructed 
visual model of the ground, the vehicle can perform more 
complex high-level tasks, including terrain classification and 
road finding.  

A. Radar Ground Segmentation 
The performance of a ground classifier is tightly connected 

with the choice of the model for the training of the system. 
This is particularly challenging at the start of the vehicle 
motion, when no prior information is available, and 
whenever a significant change in the ground properties 
occurs.  

In this research, a self-supervised training approach is 
proposed using the data obtained from radar mounted on a 
frame attached to the vehicle’s body and tilted forward so 
that the center of the beam intersects the ground at a look-
ahead distance of about 11.4 m in front of the robot. A single 
sensor sweep outputs a bidimensional intensity graph (radar 
image) as shown in Fig. 3(a), acquired from a large, 
relatively flat area. The abscissas in Fig. 3(a) represent the 
horizontal scanning angle. The ordinates represent the range 
measured by the sensor. 

The RGS system was proved to be effective in performing 
ground segmentation using a physical model of the ground 
echo that is compared against a given radar observation to 
assess the membership confidence to ground, non-ground, 
and unknown. However, it is worth noting that the ground 

 
Fig. 2.  Architecture of the proposed system. The training stage is supervised by the radar, allowing continuous update of the ground model during robot 
operation. 

 
(a) 

 
(b) 

Fig. 3. (a) Radar image with overlaid RGS results. Black dots represent 
ground returns, while outlined squares are used for unknowns. (b) 
Projections of ground-labeled radar returns in the corresponding camera 
image with a close up of some attention windows. Visual features 
extracted from these windows provide the training set to build a visual 
model of the ground. Note that only the points lying in the field of view 
common to both sensors are shown. 
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echo refers to the intensity return scattered back from the 
portion of terrain that is illuminated by the conical beam of 
the sensor, usually referred to as the footprint. For our 
system, the footprint varies with the scan angle between 6-10 
m, thus limiting the radar resolution for segmentation 
purposes. As an example, the RGS system output is overlaid 
over the radar intensity image of Fig. 3(a). Ground labels are 
denoted by black dots, while outlined squares mark uncertain 
terrain. The corresponding visual image is shown in Fig. 
3(b). Note that only the points lying in the field of view 
common to both sensors (approximately 70 deg horizontally) 
are shown.  

B. Radar-Camera Integration 
For each radar scan, the RGS module detects and ranges a 

set of background points in radar-centered coordinates, 
which we regard as good estimates of ground.  

To perform radar-camera integration, these points are, first, 
projected in the camera image using the perspective 
transformation, based on the known intrinsic and extrinsic 
camera calibration parameters. Then, for each projected 
point, an attention window is fixed in the camera image. In 
order to perform a local analysis of the visual characteristics 
of the ground, we analyze small ground portions of 
0.30m×0.30m. At an average distance of 10-12 m, this leads 
to windows of approximately 35×7 pixels (see Fig. 3(b)). 
Successively, the image patches associated to the windows 
are processed to extract visual features and build a training 
set for the concept of ground.  

C. Visual Ground Classifier 
The ground visual model building phase is formulated as a 

one-class classification problem [13]. One-class 
classification methods are generally useful in two-class 
classification problems, where one class, referred to as the 
target class, is relatively well-sampled, while the other class, 
referred to as the outlier class, is relatively under-sampled or 
is difficult to model. Typically, the objective of a one-class 
classifier is that of constructing a decision boundary that 
separates the instances of the target class from all other 
possible objects. In the context of this paper, ground samples 

constitute the target class, while non-ground samples (i.e., 
obstacles) are regarded as the outlier class. It is worth noting 
that in principle, both ground and non-ground samples from 
RGS may be exploited to train a two-class classifier. 
Nevertheless, in open rural environments non-ground 
samples are typically sparse; in addition, the variation of all 
possible non-ground classes is unlimited. That makes it 
difficult to model the non-ground class, whereas, although it 
changes geographically and over time, the ground class is 
generally less variable than random objects. Furthermore, 
our objective is that of building a visual model of the ground. 
Therefore, it is reasonable to formulate the problem as a 
distribution modeling one, where the distribution to estimate 
is the ground class. Specifically, we adopt a multivariate 
Gaussian distribution to model positive ground samples, and 
we implement a Mahalanobis distance classifier [14].  

Let us consider NG ground patterns. The ground pattern i 
is represented by its m-dimensional row feature vector fG

i, 
with m being the number of feature variables. These vectors 
constitute the training set X, expressed in the form of a NG 
×m matrix. If we compute the sample mean μ and the sample 
covariance Σ of the data in X, we can denote the ground 
model as M(μ, Σ). Then, given a new pattern f, the squared 
Mahalanobis distance between f and M(μ, Σ) is defined as:  

( ) ( )Tffd µµ −Σ−= −12       (1) 

The pattern is an outlier, i.e. it is defined as a non-ground 
sample, if d2 is greater than a threshold. The latter is 
computed as the α-quantile 2

;αχm  of the chi-square 
distribution with m degrees of freedom. Note that, in order to 
update the ground class during the vehicle motion, the model 
M(μ, Σ) is continuously rebuilt, always using the ground 
feature vectors obtained by the most recent radar scans.  

III. EXPERIMENTAL RESULTS 
In this section, experimental results are presented, to 

validate our approach for ground segmentation using a 
millimeter-wave radar and a monocular camera.  

The system was tested using the CORD UGV (see Fig. 1). 

 
(a) 

 
(b) 

Fig. 4.  (a) Observations obtained by the radar at scan #778 before visual classification. Black dots and triangles denote radar-labeled ground and non-
ground observations, respectively. Outlined squares denote uncertain measurements. (b) Results after classification of the unknowns using the visual 
classifier. Outlined circles and triangles denote ground and non-ground, respectively. 
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The test field was located in a rural environment at the 
University of Sydney’s test facility near Marulan, NSW, 
Australia [15]. It was mainly composed of a relatively flat 
ground made of natural terrain with sparse low grass, 
delimited by fences. A few obstacles were present in the 
field, including a static car, a trailer, and a metallic shed. 
During the experiment, the CORD vehicle was remotely 
controlled to follow an approximately closed-loop path, with 
an average travel speed of about 0.5 m/s and a maximum 
speed of 1.5 m/s. Overall, 868 radar images and 
corresponding visual images were acquired, with a total 
number of 28,326 observations in the field of view common 
to both sensors. Of these observations, 23,535 were labeled 
as ground, 41 as non-ground, and 4,750 as unknown by the 
RGS module. In order to provide a quantitative evaluation of 
the system performance, we measured the true positive and 
false positive rates of the visual classifier for the unknown-
labeled observations returned by the RGS module. The 
ground-truth was constructed manually, yielding to 3,786 
ground patterns (the first seven of which remained 
unclassified, as belonging to the first frames used for initial 
model building) and 964 non-ground patterns. 

In this implementation, we used a four-dimensional 
feature vector resulting from the concatenation of visual 
textural descriptors (i.e., contrast and energy), along with 
colour descriptors (i.e., mean intensity values in the 
normalized red and green colour planes). More complex 
visual descriptors may be also used without altering the rest 
of the algorithm, as long as the hypothesis of normally 
distributed features holds. The visual classifier was 
continuously re-trained along the sequence, using the last 
100 radar-labeled ground samples, corresponding 
approximately to a 1.2-sec temporal window. As an 
example, Fig. 4 shows, for an image of the sequence, the 
radar output and the result of the classification of the 
unknown-labeled observations using the visual classifier. 
RGS results (Fig. 4(a)) are denoted by black dots and 
triangles for returns labeled as ground and non-ground, 
respectively, and by outlined squares for returns labeled as 
unknowns. The output of the visual classification of radar 
unknowns (Fig. 4(b)) is shown using outlined circles for 

patterns classified as ground and outlined triangles for 
patterns classified as non-ground. 

In order to establish the optimal threshold value for the 
Mahalanobis distance-based classifier, we constructed the 
receiver operating characteristic (ROC) curve of the system, 
formed as the cutoff value for terrain detection is adjusted by 
varying α between 0 and 1. The resulting ROC curve is 
shown in Fig. 5. The vertical axis indicates the true positive 
rate (i.e., the fraction of ground patches which were correctly 
classified as ground), while the horizontal axis indicates the 
false positive rate (i.e., the fraction of non-ground samples 
which were erroneously classified as ground by the system). 
Note that random assignment of a patch to the ground class 
would yield a diagonal line from (0, 0) to (1, 1). We can 
observe that the point of maximum difference between the 
true positive rate and the false positive rate is reached 
approximately at α=0.993, and corresponds to a true positive 
rate of 94.1% and a false positive rate of 18.3%. For this 
point, the overall accuracy, i.e. the fraction of correct 
detections with respect to the total number of classifications 
is of 91.6%. 

The advantage of using an adaptive online learning 
approach with respect to a batch training system can be 
shown by computing the rolling average of the true positive 
rate for the same sequence, with and without ground model 
update. In the latter case, the ground model was constructed 
at the beginning of the sequence, and was never updated. If 
we denote with TPi the percentage of correct ground 
identifications at scan i, the rolling average of the true 
positive rate at scan j can be defined as: 

∑
+−=

=
j

Nji
ij TP

N
PT

1

1         (2) 

where N is the size of the average window. The resulting 

 
Fig. 5.  ROC curve of the visual classifier, formed as the cutoff threshold 
for terrain detection is adjusted. 

 
A)     
B)     
C)     
D)     

Fig. 6.  Rolling average of the true positive rate with (black line) and 
without (gray line) ground model update. Some samples where significant 
change in the terrain appearance occurs are indicated, and the pertinent 
visual images are shown in the lower part of the graph: A-mostly sandy, B- 
mostly grass, C-sand/grass, D-mostly sandy. 
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graph, obtained using α =0.993 and N=20, is shown in Fig. 6. 
It allows one to highlight the trend of the true positive rate of 
the classifier, either when the ground model is continuously 
updated (black line in the figure) or in case of no update 
(gray line in the figure). We can observe that the true 
positive rate remains almost constant if the ground model is 
continuously re-learnt, while it decreases if the model is 
constructed only once at the start of the vehicle operation 
due to terrain changes. For instance, a significant reduction 
of the average true positive rate occurs starting from 
approximately the 95th scan where the terrain starts changing 
from sandy (A) to mostly grass (B). In contrast to this, an 
increment is observed in the last part of the sequence, where 
we have sand/grass (C) and mostly sandy soil again (D), as 
the vehicle returns to its starting position.  

Once the classifier has been trained, the vision algorithm 
can be run on the entire field of view of the camera. To this 
aim, the image is divided in small patches, and individual 
sub-images are classified as ground or non-ground according 
to their Mahalanobis distance from the current ground 
model. The extension of the classification to the entire scene 
for the sample image of Fig. 4 is displayed in Fig. 7. In this 
picture, the results of visual classification are overlaid on the 
original image: each patch is assigned either a red color if 
classified as non-ground or a green color if classified as 
ground.  

IV. CONCLUSION 
In this paper, we proposed a self-supervised radar-vision 

classification system that allows an autonomous vehicle, 
operating in natural terrains, to automatically construct 
online a visual model of the ground and perform accurate 
ground segmentation. With respect to radar-vision systems 
previously developed in literature, our work presents the 
following main novelties:  

1) Use of radar output to fix attention windows in the 
camera images and extract training data for the concept of 
ground, instead of detecting and classifying obstacles. 

2) Automatic online labeling based on a radar ground 
segmentation approach prior to image analysis. This avoids 
time consuming manual labelling to construct the training 

set. At the same time, no a priori knowledge of the visual 
terrain appearance is required. 

3) Adaptive ground model learning by continuously re-
training the classifier using the most recent radar scans. This 
is particularly useful for long range and long duration 
navigation applications.  

We demonstrated the effectiveness of the proposed 
approach through field validation. Results were promising, 
showing overall classification accuracy greater than 90%.  
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Fig. 7.  Result of classification of the entire camera field of view at scan 
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