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Abstract Kalman filters have been widely used for navigation It estimates the state of a dynamic system using two different
in mobile robotics. One of the key problems associated with Kalman models, namely the dynamic and the observation model. The
filter is how to assign suitable statistical properties to both the dynamic model describes the behavior of the state vector
dynamic and the observational models. For GPS-based localization dnic oel describe hel behavioreo the stlate vecor
of a rough-terrain mobile robot, the maneuver of the vehicle and the whil teoservanmoe stabe thr ons be
level of measurement noise are environmental dependent, and hard to tween measurements and the state vector. Both models are
be predicted. This is particularly true when the vehicle experiences associated with statistical properties to describe the accuracy
a sudden change of its state, which is typical on rugged terrain of the models. For many applications, the statistic noise
due, for example, to an obstacle or slippery slopes. Therefore to levels of the model are given before the filtering process and
assign constant noise levels for such applications is not realistic.
In this work we propose a real-time adaptive algorithm for GPS wilmanltai a duringtthe whole r siveproces
data processing based on the observation of residuals. Large value Commonly, this a priori statistical information is determined
of residuals suggests poor performance of the filter that can be by test analysis and certain knowledge about the observation
improved giving more weight to the measurements provided by the type beforehand. If such a priori information is inadequate
GPS using a fading memory factor. For a finer gradation of this to represent the real statistic noise levels, Kalman estimation
parameter, we used a fuzzy logic inference system implementing our . . . '
physical understanding of the phenomenon. The proposed approach is not optimal and may produce unreliable results, somehmeswas validated in experimental trials comparing the performance even leads to filtering divergence [4]. Such is the case when
of the adaptive algorithm with a conventional Kalman filter for the vehicle comes to a sudden stop or steers with small
vehicle localization. The results demonstrate that the novel adaptive turning radius. Those manoeuvres are hardly predictable by
algorithm is much robust to the sudden changes of vehicle motion the filter. Therefore, a system with constant noise variances
and measurement errors. is inadequate to satisfy all situations and difficult to design.

Keywords: GPS, mobile robot localization, adaptive filter- Specifically, one typical problem with vehicle localization
ing, fuzzy logic using Kalman filter is the so called "over shooting" problem,

i.e. the dynamic model keeps estimating the robot position
I. INTRODUCTION according to the previous trend while the vehicle is actu-

In the last few years, mobile robots are increasingly been ally turning to another direction. Adaptive filtering tries to
employed in high-risk, rough terrain situations, such as recon- determine the statistical parameters of the dynamic system
naissance, safety, and rescue applications. They are required based on the behavior of the vehicle during data processing,
to explore larger and larger areas, performing difficult tasks, and it has been paid much attention in Kalman filtering
while preserving, at the same time, their safety. The success theory [5], [6]. Different adaptive Kalman filtering algorithms
of the planned tasks is tightly connected with the vehicle's have been studied for surveying and navigation applications.
ability to self-localize, i.e. to produce accurate estimates of Mohamed and Schwarz [4] applied adaptive Kalman filters
its position and attitude. This primarily requires advanced for the integration of GPS and inertial navigation system
sensing and perception capabilities. For outdoor applications, (INS). Wang et al [7] applied a simplified adaptive algorithm
absolute localization based on GPS is commonly available for in kinematic GPS positioning. Hu et al [3], developed two
mobile robots [1]. In order to enhance localization accuracy adaptive algorithms using GPS, one based on the fading
and robustness, Kalman filtering has been widely applied in memory and the other based on the variance estimation. In this
GPS-based localization [2]. However, a conventional Kalman work, we propose an adaptive filter for vehicle localization
filter fails to estimate accurately the turning points ofamobile based on GPS data similar in principle to [3], using the
robot. It typically provides poor results for sudden changes fading memory approach in conjunction with fuzzy logic. The
in the vehicle's state [3]. The Kalman filtering is an optimal fading memory approach aims at estimating a scale factor to
recursive estimation method that has been widely applied in increase adaptively the predicted variance components of the
real-time processing of incomplete and noisy measurements. state vector. This is performed by observing the residuals of
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the filter which reflect the discrepancy between the predicted
measurement of the filter with the actual one. A residual
of zero means that the two are in complete agreement and Correction
the filter is working properly. We found that fuzzy logic is Prediction (1) Compute the Kalman gain
well suited for this task and developed a divergence indicator (1) Projectthe state ahead K k+1 = Pk +1 H T (H Pk±l H T +Rr
which receives as input the size of the predicted residuals k +1 k (2) Update state with new measurement
and issues as output a corrective scale factor for the estimate (2)Project the errorcovariance ahead xk-+=xk+±+Kk+X(Zk+1-Hxk+ )
error covariance. If there is no divergence, the conventional Pk-+,A PkAT+BQBT (3) Update the error covaiiance
Kalman filtering is used. Otherwise the adaptive algorithm is e Pk=(I-Kk+H)Pk-
applied. The adaptive algorithm for GPS-based localization
was experimentally validated using a rover named Dune, built Initial Es iate forx and P
at the Space Robotics Laboratory of the University of Tohoku.
The vehicle, shown in Fig. 1, features a four wheel drive
independent steering system that enhances maneuverability by
enabling maneuvers such as turn-on-the-spot and crab motion.
It also employs a passive rocker-type suspension system based
on a differential gearbox to connect the two side links of with a measurement z C Jm
the rover improving the ability of the vehicle to climb up Zk+1 = HXk+l + Vk+1 (2)
obstacles and traverse uneven terrain while ensuring good
traction performance. Section II describes in detail the adaptive The random variables Wk and Vk represent the process and
kalman filer algorithm. Experimental results, obtained from measurement noise, respectively. They are assumed to inde-
Dune operating with different speeds and terrain conditions, pendent of each other, white, with normal probability distri-
are presented in Section III demonstrating that the positing butions, being Q and R the process and measurement noise
accuracy with the adaptive approach is significantly better than covariance, respectively. Kalman filtering estimation can be
the conventional Kalman filtering, especially when the vehicle expressed as
stops and starts repeatedly, and turns around the corners. Prediction:

k+1 =A±k (3)
II. THE ADAPTIVE KALMAN FILTERING ALGORITHM P =B TTTk±+1 =ARk +Q (4)
Kalman filtering is a well known technique for state and pa- Correction:

rameter estimation. It is a recursive estimation procedure that
uses sequential sets of measurements. In recent years Kalman Kk+1 = P H1HT(HP- 1HT + R) 1 (5)
filter based localization has became common practise in the ± +
robotics literature. The Kalman filter addresses the general Xk+1 = <±1 + Kk+1(Zk+1-H 1) (6)
problem of estimating the state x C J' of a discrete-time
controlled process that is governed by the linear stochastic Pk+, = (I - Kk+lH)PJ+l (7)
difference equation where x±K+ is the predicted state vector, Pk+1 is the

1k±1 = Ak + Bwkc (1) variance matrix for ±+ , Kk+1 is the gain matrix, 1
is the updated state vector, and Pk+1 is the updated error
covariance estimate [8]. The prediction equations are respon-
sible for projecting forward in time the current state and error
covariance estimates to obtain the a priori estimates for the
next time step. The correction equations are responsible for the
feedback, i.e. for incorporating a new measurement into the a
priori estimate to obtain an improved a posteriori estimate.A
complete picture of the Kalman filter cycle with equations
is shown in Fig. 2. The Kalman filtering estimation at a

/ ~~~~~~~~~giventime k can be considered as a weighted combination
between the new measurement (observation model) and the

redicted state vector based on the dynamic model and allpreviousnfrmtinromeasurements.Itomuh'eg'isaind is



error covariance to deliberately increase the variance of the ,1O
predicted state vector and thus resulting in more 'weight' given ,O \
to the actual measurements Smrall LargeE O.6

Pk+±l =M(APkAT + BQBT) (8)
0.2

The main difference between different fading memory algo- \
0 1 0 20 30 40 50 60 70 80rithms is on how to calculate the scale factor M. One simple

approach is to assign the scale factor as a constant, but utput - Scale Factor

this leads to some drawbacks. For example, as the filtering 1.0
proceeds, the accuracy of the pose estimation will decrease ,o 0H8 \
because the effects of old data will become less and less. 0.6

The optimal solution is to use a variable scale factor that will 0.4
be determined based on the dynamic and observation model

0.2

accuracy. In this paper, we propose a fading memory algorithm ___
using fuzzy logic to adjust adaptively the scale factor based 1.0 1.2 1.4 1.6
on the size of the predicted residuals. The predicted residual M

vector, or innovation vector, represents the difference between Fig. 3. Membership functions of the DI
the actual measurement and the predicted one and is expressed
by

k+1 = Zk+l-H k+ (9) III. EXPERIMENTS

For an optimal kalman filtering, the innovation vector should The adaptive algorithm for GPS-based mobile robot local-
be a zero mean white noise [9]. Therefore the performance ization was experimentally validated on the rover Dune. For

of the kalman filter can be measured using the value of the experiments, we used two Trimble 5700 dual frequency
the innovation vector. Our hypothesis is that deviation of GPS receivers. One receiver was set as a reference station.
the innovation vector from zero by more than a certain Another GPS receiver was installed on the top of the rover

value suggests reduction in performance of the filter that can Dune (see Fig. 1). Both dual frequency pseudorange and
be corrected with a scale factor applied to the covariance carrier phase measurements were collected during the test. A
matrix. For a finer gradation of the scale factor, we adopted constant velocity model was adopted as the dynamic model for

fuzzy logic that uses rules to map from inputs to outputs, the Kalman filter. The state vector consists of the geocentric
and defined what we call a Divergence Indicator (DI). The coordinate (X, Y, Z) and velocity (X, Y, Z). The accelerations
triangular membership functions used in the DI, i.e., the curves are considered as the dynamic model noise. The double
that map each point in the input space to a membership difference pseudoranges were formed as the observation, and
value or grade between zero and one, usually referred to as therefore, the receiver clock bias errors were not modeled in
the normalization process, are shown in Fig. 3. The fuzzy data processing. We focused on two types of experiments.
inference system uses one input and one output. Input is the In the first experiment, the rover was driven along a short
innovation vector. The output is the scale factor that quantifies distance, L-shaped path. The travel velocity was slow and the

the degree of confidence we have that divergence is occurring.
Normalization is performed using the if-then rule set shown in
Table I whereas the thresholds for the memberships function 45 Ground Truth Path
were experimentally-determined to give the best performance 4
over other alternatives. Defuzzification is executed using the &5
center of gravity method [10]. In our approach, we only try
to estimate the variance factor of the dynamic model, as GPS 3

measurement noise can be assigned to a reasonable level based 25
on the type of GPS receiver employed. 2

z

1.5

Rule Input: 'k+1 Output: Scale Factor M
1 Small Low 0.5

|2 Large High 0 1

TABLE I Easting in]

FUZZY LOGIC RULES FOR THE DI Fig. 4. Path of the rover
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. P g erwnlK [It is clearly shown that the positioning errors are significantly
X-°°'00'f different when different dynamic noise levels were selected.X U ~~~~~~~~~~~~Thepeaks in Fig. 6 are larger than those in Fig. 5. The RM\S
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300

-300050 100 150 200 250 300 35o0 m os2and 0.05 mls2, respectively. Figure 7 shows the ground

I [SMtruth path estimated with carrier phase measurements and the

Fig. 6. Positioning error with conventional Kalman filter (v20.05 r/see2) estimated one using C/A code pseudorange with conventional
Kalman filter. For readability's sake, only the movement of
the vehicle along the North-direction is considered. On the

terrain flatIwithout any sinificantvariationsinaltitude.Inthe straight lines, the positioning errors are similar with different
terrainflat without any significant variations ialtueI noise levels. However, with tight constraint on the dynamic

second experiment, the rover was commanded to follow a long noise level (0.05 mIs2), the positioning errors are significantly
distance, closed path. In this test the speed was moderate and larger when the rover stops or turns. Afterwards, the same data
the vehicle had to negotiate a steep slope in both the downward set was processed using the adaptive filter discussed in Section
and upward directions. II. Figure 8 shows the positioning errors with the adaptive

Kalman filter. Comparing Fig. 8 with Figs. 5 and 6, it is

A.~ ~ ~~ ~ ~ ~ ~ ~ ~~~~~~h vehicle alngte orhdietin scosdeednnh

clearly shown th ththe positioning errors with the adaptive filter
The rover was remotely controlled with a joystick along an are significantly smaller than the conventional filter. For the

approximately 2 mx4 m, L-shaped path with a travel speed of fading memory filter, the positioning errors are reduced to 17
about 5 cm/s. As an initial step, the reference trajectory was mm and 17 mm RMS for Basting and Northing, respectively.
obtained with kinematic GPS position inusing carrier phase The error reduction resulted in 60ve and 7500 compared with
measurement inRTK GPS mode (accuracy of 10 mm ± 1 ppm the two conventional filters. Also, the errors in Fig. 8 are
RM\S, [11]), which we considered as the ground truth in more uniformly distributed and this means that the positioning
our experiment. Then, the Li C/A code data (accuracy of errors are not associated with the sudden manoeuver changes
0.25 m ± 1 ppm ReMS) were processed using different Kalman of the vehicle. The advantage of the adaptive approach is also
filters. In order to validate the performance of the adaptive demonstrated in Fig. 9 where the two filter implementations
kalman filter in detecting changes in Dune's state, the rover are compared side by side during a sudden stop of the rover
was repeatedly stopped and started along the way, and also per- occurring between 116 and 140 seconds of the experiment.
formed the heading change with a turn-on-the-spot maneuver. The improvement in the accuracy of the position estimation
Figure 4 shows the path followed by the rover as estimated by is obvious and significant. Table II summarizes the Ri S
the RTK-GPS. The conventional Kalman filtering method was error using conventional and adaptive filtering algorithm. For
firstly used to process the DPGS data. Two different dynamic the adaptive filters, the initial noise levels are chosen the
noise levels had been chosen t ahe influence of noisve sme as the conventional Kalman filter. The dynamic noise
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Fig. 8. Positioning error with the adaptive Kalman filter Fig. 10. Output of the DI

level greatly affects the performance of the conventional filter.
For fading memory filter, the positioning errors are reduced applied separately to process differential pseudorange data.signfaicn Anmber, ther tesitsohavealsorbeeneperfored The paths estimated by the two methods are plotted in Fig. 11significantly. A number of other tests have also been performed
and the results confirm the above conclusions. Finally, Fig. 10 and Fig. 12 compared with the ground truth data, respectively.
shows the output of the DI. The adaptive compensation was Figure 13 shows the altitude estimates of the vehicle during the
injected for 310% of the time in this experiment. experiment, instead. It is clear to see that the position accuracy

with the conventional kalman filter is much worse than that
B. Closed-path experiment with the adaptive filter. The peak errors are associated with the

The performance of the adaptive filter over long distances turns of trajectory. Table III shows the RMS errors provided by
the three filters and confirms the improvement in the positing

was assessed by running some closed-path tets. In these experi-
ments, the rover started its at a flat, marked location and, after a system accuracy using the fading memory, which allows a six-

near-rectangular-path retume to the sameposition,resulting fold and four-fold reduction in the error, respectively, whennear-rectangular-path, returned to the same position, resulting..
in a total travel distance of D = 150m. The speed of the rover compared with the two conventional kalman filters.
was 35 cm/sec. During its course, the robot descended and
then reclimbed up a 20-meter long slope of approximately IV. CONCLUSION
16% of inclination. Again, the actual path of the vehicle was
derived by GPS RTK technique with accuracy of centimeter Conventional Kalman filter is very sensitive to the selec-
level. Then, the conventional filter and the adaptive filter were tion of the noise level of the dynamic model. This paper

presented an adaptive Kalman filter to improve GPS-based
22 localization of mobile robots in outdoor applications. The

proposed approach was based on a fuzzy indicator to define
215 a scale factor for the predicted covariance matrix (fading

memory) by observing the size of residuals. It was shown
2.1 that this method is effective in experimental trials using a

2.05 rough-terrain rover, reducing the positioning error up to 75%
than conventional Kalman filters. This technique can be used

O2 to improve localization accuracy in rough-terrain autonomous
-U vehicles.
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Fig. 9. Overshoot due to a sudden stop of the rover, as estimated by POSITIONING ERRORS WITH DIFFERENT FILTERS, L-PATH EXPERIMENT
conventional and adaptive Kalman filter F



o Stop Filter Conventional Conventional Adaptive- Ground Truth Start Type Kalman Filter Kalman Filter Filter
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