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Autonomous vehicle operations in outdoor environments challenge robotic perception. Construction, mining,
agriculture, and planetary exploration environments are examples in which the presence of dust, fog, rain,
changing illumination due to low sun angles, and lack of contrast can dramatically degrade conventional
stereo and laser sensing. Nonetheless, environment perception can still succeed under compromised visibil-
ity through the use of a millimeter-wave radar. Radar also allows for multiple object detection within a single
beam, whereas other range sensors are limited to one target return per emission. However, radar has short-
comings as well, such as a large footprint, specularity effects, and limited range resolution, all of which may
result in poor environment survey or difficulty in interpretation. This paper presents a novel method for ground
segmentation using a millimeter-wave radar mounted on a ground vehicle. Issues relevant to short-range per-
ception in an outdoor environment are described along with field experiments and a quantitative comparison
to laser data. The ability to classify the ground is successfully demonstrated in clear and low-visibility condi-
tions, and significant improvement in range accuracy is shown. Finally, conclusions are drawn on the utility
of millimeter-wave radar as a robotic sensor for persistent and accurate perception in natural scenarios. C© 2011
Wiley Periodicals, Inc.

1. INTRODUCTION

In the past few years, mobile robots have been increas-
ingly employed for outdoor applications such as mining,
earth moving, agriculture, search and rescue, and planetary
exploration. Imaging sensors can provide obstacle avoid-
ance, task-specific target detection, and generation of ter-
rain maps for navigation. Visibility conditions are often
poor in field scenarios. Day/night cycles change illumi-
nation conditions. Weather phenomena such as fog, rain,
snow, and hail impede visual perception. Dust clouds rise
in excavation sites and agricultural fields, and they are ex-
pected during planetary exploration. Smoke also compro-
mises visibility in fire emergencies and disaster sites. Laser
and stereo are common imaging sensors affected by these
conditions (Vandapel, Moorehead, Whittaker, Chatila, &
Murrieta-Cid, 1999). The sizes of dust particles and fog
droplets are comparable to the wavelength of visual light,
so clouds of particles block and scatter the laser beams, im-
peding perception. Stereo vision depends on the texture
of objects and on an illumination source. Sonar is a com-
mon sensor not affected by visibility restrictions. However,
it is considered to be of limited utility for field robots due
to high atmospheric attenuation, noise, and reflections by
specular surfaces.

Whereas laser scanners and (stereo) cameras may have
difficulties sensing in dusty environments, radar operates
at a wavelength that penetrates dust and other visual ob-
scurants. Thanks to its ability to sense through dust, radar
overcomes the shortcomings of laser, stereo, and sonar
and can be successfully used as a complementary sen-
sor to conventional range devices (Peynot, Underwood, &
Scheding, 2009). Millimeter-wave (MMW) radar with its
narrow beam pattern (from a small aperture and compared
to lower frequency alternatives) and wide available band-
width provides consistent range measurements for the en-
vironmental imaging needed to perform autonomous op-
erations in dusty, foggy, blizzard-blinding, and poorly lit
environments (Foessel-Bunting, 2000). In addition, radar
can provide information of distributed and multiple targets
that appear in a single observation. However, development
of short-range radar imaging is still an open research area.
MMW radar scanning is generally performed mechanically
in two-dimensional (2D) sweeps with a resolution that is
typically limited to 1–3 deg in azimuth and elevation and
0.25 m in range, as determined by the antenna aperture
and available bandwidth. Higher angular resolution can
be obtained only with inconveniently large antenna aper-
tures, and downrange resolution has hardware limitations,
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although interpolation techniques have been applied to im-
prove it for point targets. This makes it difficult to generate
elevation maps because objects of different heights are illu-
minated at the same time, and it prevents the use of geo-
metric or shape algorithms, such as those commonly used
with lasers. In general, the “alternate” image of the scene
provided by the radar may be difficult to interpret because
its modality, resolution, and perspective are very different
from those of visual images.

Furthermore, radar propagation to some extent and
particularly scattering are different from those of optical-
based sensors, such as laser, stereo, or sonar; thus existing

sensor models are inadequate. For example, laser data typ-
ically return the range to the first target detected along the
beam, although last pulse–based lasers solve this problem
to some extent and are becoming more common. In con-
trast, radar outputs power-downrange arrays, i.e., a single
beam contains information from multiple targets mainly
due to the wider beamwidth (about 2–3 deg compared with
0.1 deg for the laser). A single sensor sweep, therefore,
outputs data containing n samples at discrete range incre-
ments dR along each azimuth or scan angle. As an example,
Figure 1(a) shows a bidimensional intensity graph of the
radar data (radar image) acquired from a large, relatively

Figure 1. A sample radar image acquired from a large flat area: azimuth angle-range image (polar coordinates, radar frame) (a),
same radar image in Cartesian coordinates (radar frame) (b), and camera image approximately colocated with the radar (c). Note
the rich information content of the radar map due to its ability to sample reflectivity at multiple ranges for a single scan angle.
Please refer to the online version of the paper for a color view of the radar image.
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flat area [Figure 1(c)]. The abscissas in Figure 1(a) represent
the horizontal scanning angle. The ordinates represent the
range measured by the sensor. Amplitude values above the
noise level suggest the presence of objects with significant
reflectivity. Amplitude close to or below the noise level gen-
erally corresponds to the absence of objects, but exceptions
exist. These include specular reflecting surface aligned to
reflect the signal away, a highly absorbing material, or a to-
tal occlusion of radiation.

One interesting feature of the radar image is the
ground echo, i.e., the intensity return scattered back from
the portion of terrain that is illuminated by the sensor
beam. In the presence of relatively flat terrain, the ground
echo appears as a high-intensity parabolic sector in the
radar image [see Figure 1(a)]. This sector is referred to as the
radar image background throughout the paper. The abil-
ity to automatically identify and extract radar data pertain-
ing to the ground and project them onto the vehicle body
frame or navigation frame would result in an enabling tech-
nology for all visibility-condition navigation systems. In
this research, a theoretical model describing the geometric
and intensity properties of the ground echo in radar im-
ages is described. It serves as a basis for the development
of a novel method for radar ground segmentation (RGS),
which allows classification of observed ground returns in
three broad categories, namely ground, nonground, and
unknown. The RGS system also improves the accuracy
in range estimation of the detected ground for enhanced
environment mapping. Persistent ground segmentation is
critical for a robot to improve perception in natural terrain
under all visibility conditions, with many important appli-
cations including scene interpretation, environment classi-
fication, and autonomous navigation, as ground is often
taken as the most likely traversable terrain. It should be
noted that this research focuses specifically on the analysis
of the radar image background. The full radar data can also
be used to detect objects present in the foreground. How-
ever, this is out of the scope of the paper and it is not ex-
pressly addressed here.

In this investigation, a mechanically scanned MMW
radar, designed for perception and navigation in low-
visibility conditions, is employed. The sensor, custom built
at the Australian Centre for Field Robotics (ACFR), is a
95-GHz frequency-modulated continuous wave (FMCW)
MMW radar that reports the amplitude of echoes at ranges
between 1 and 120 m. The wavelength is λ = 3 mm, and the
3-dB beamwidth is about 3.0 deg in elevation and azimuth.
The antenna scans across the angular range of 360 deg. The
important technical properties of the sensor are collected in
Table I.

For the extensive testing of the system during its devel-
opment, the CAS Outdoor Research Demonstrator (CORD)
was employed, which is an eight-wheel, skid-steering all-
terrain unmanned ground vehicle (UGV) [see Figure 2(a)].
In Figure 2(b), the radar is visible, mounted to a frame

Table I. Radar technical properties.

Property Value

Model ACFR custom-built
Max. range (m) 120
Raw range resolution (m) 0.25
FOV (deg)

Horizontal 360
Instantaneous 3.0 × 3.0

Angle scan rate (rps) �3
Chirp period (ms) 2

Figure 2. The CORD UGV employed in this research (a) and
its sensor suite (b).

attached to the vehicle’s body and tilted forward so that
the center of the beam intersects the ground at a look-
ahead distance of about 11.4 m in front of the vehicle. The
robot is also equipped with other sensors, including four
2D SICK laser range scanners, a mono-charge-coupled de-
vice (CCD) color camera, a thermal infrared camera, and
a real-time kinematic/differential global positioning sys-
tem/inertial navigation system (RTK DGPS/INS) unit that
provides accurate position and tilt estimation of the vehicle
during the experiments.

Journal of Field Robotics DOI 10.1002/rob
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The paper is organized as follows. A description of re-
lated literature is provided in Section 2, and basic princi-
ples of radar sensing are recalled in Section 3. The model of
ground echo and the RGS method are described in detail in
Sections 4 and 5, respectively. In Section 6, the RGS system
is proved to be effective and robust to visibility conditions
in field tests performed with the CORD UGV. Section 7 con-
cludes this paper.

2. RELATED WORK

Persistent navigation is one of the basic problems for au-
tonomous mobile robots. The extraction of information
about the surrounding environment from sensory data to
build up a map, while at the same time keeping track of
its current position, in what is usually referred to as simul-
taneous localization and mapping (SLAM) (Dissanayake,
Newman, Clark, Durrant-Whyte, & Csorba, 2001), is a key
component for a mobile robot to accomplish the assigned
task. Hence, fast and reliable algorithms capable of extract-
ing features from a large set of noisy data are critical in such
applications, especially for outdoor environments. Specifi-
cally, detection and segmentation of the ground in a sensor-
generated image is a challenging problem with many ap-
plications in perception. This is a key requirement for scene
interpretation, segmentation, and classification (Douillard,
Underwood, Kuntz, Vlaskine, Quadros, et al., 2011), and it
is important for autonomous navigation (Reina, Ishigami,
Nagatani, & Yoshida, 2010). For the purposes of obstacle
detection and avoidance, current systems usually rely on
ranging sensors such as vision, laser, or radar to survey
the three-dimensional (3D) shape of the terrain. Some fea-
tures of the terrain, including slope, roughness, and dis-
continuities, are analyzed to segment the traversable re-
gions from the obstacles (Pagnot & Grandjea, 1995; Singh,
Simmons, Smith, Stentz, Verma, et al., 2000). In addition,
some visual cues, such as color, shape, and height above the
ground, were employed for segmentation in DeSouza and
Kak (2002) and Jocherm, Pomerleau, and Thorpe (1995).
Other methods used motion cue of stereo images (Ohnishi
& Imiya, 2006; Zhou & Baoxin, 2006). The ground is de-
tected and segmented by computing a disparity map, i.e.,
the point correspondences between two images. The image
motion induced by the ground can be characterized by a
homography, which differs from that induced by obstacles.
Thus, the ground pixels and obstacle pixels can be identi-
fied by evaluating whether their displacements are consis-
tent or inconsistent with the motion specified by the esti-
mated homograph.

In addition, the ground region is often assumed to
be larger than that of obstacles, which facilitates the esti-
mation of the homography. These methods work well on
indoor images in which the scene is basically composed
of floor (ground) and planes perpendicular to the floor
(nonground), as the difference of the image motions
between the ground and nonground is substantial in

such scenarios. However, this approach cannot work suc-
cessfully for outdoor environments in which the sur-
face normal changes smoothly in many cases, caus-
ing only a slight difference in image motion between
ground and nonground. An alternative approach was pro-
posed using the appearance information via some learn-
ing techniques for ground segmentation (Pomerleau, 1989).
Various types of visual cues including color and tex-
ture have been used for detection of ground (Ulrich
& Nourbakhsh, 2000). Other information such as cor-
ners and edges has also been exploited in some appli-
cations (Poppinga, Birk, & Pathak, 2008; Vosselman &
Dijkman, 2001).

Relatively limited research has been devoted to inves-
tigate MMW radar for short-range perception and 3D ter-
rain mapping. For example, previous work presented the
implementation of radar-based obstacle avoidance on large
mining trucks (League & Lay, 1996). In other work, a MMW
radar–based navigation system detected and matched ar-
tificial beacons for localization in a 2D scan (Clark &
Durrant-Whyte, 1997). Pulsed radar with a narrow beam
and high sampling rate produced dense 3D terrain maps
(Boehmke, Bares, Mutschler, & Lay, 1998). However, the
resulting sensor size is excessive for most robotic applica-
tions. MMW radar has been used on a large autonomous
guided vehicle for cargo handling (Durrant-Whyte, 2002);
the radar is scanned horizontally and measures range and
bearing to a set of trihedral aluminum reflectors. The re-
flectors may be covered by a polarizing grating to enable
discrimination from other objects. Radar capability was
demonstrated in a polar environment (Foessel-Bunting,
Chheda, & Apostolopoulos, 1999) and for mining appli-
cations (Brooker, Hennesy, Lobsey, Bishop, & Widzyk-
Capehart, 2007). Mullane, Adams, and Wijesoma (2009)
used a MMW radar for occupancy mapping within a prob-
abilistic framework.

A body of research also exists in the automotive com-
munity related to road and obstacle detection in radar im-
ages. These works relied on constant (Kaliyaperumal, Lak-
shmanan, & Kluge, 2001) or adaptive (Jiang, Wu, Wu, &
Sun, 2001) thresholding but achieved only marginal per-
formance on good paved roads and are unsuitable for off-
highway driving.

3. RADAR BACKGROUND

The working principle of the radar used in this research is
based on a continuous-wave (CW) signal that is modulated
in frequency to produce a linear chirp that is radiated to-
ward a target through an antenna. The echo received from
a target nanoseconds later by the same antenna is mixed
with a portion of the transmitted signal to produce a beat
signal at a frequency that will be proportional to the round-
trip time. A spectrum analyzer can then be used to produce
an amplitude-range profile that represents this target as a
spectral peak. Any other targets within the antenna beam

Journal of Field Robotics DOI 10.1002/rob
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would simultaneously produce their own peaks, giving the
radar a true multitarget detection capability from a single
observation (Brooker, Hennessey, Bishop, Lobsey, Durrant-
Whyte, et al., 2006). For robot perception, an accurate range
map of the environment can be constructed through the
scanning of a narrow beam, which is usually referred to as
a pencil beam. MMW radar provides a pencil beam with
relatively small antenna apertures. The beam width is pro-
portional to the wavelength and is inversely proportional
to the antenna aperture. A constant uniformly illuminated
antenna aperture shapes narrower beams at shorter wave-
lengths according to Brooker (2005):

θe = 1.02
λ

D
. (1)

Equation (1) relates the elevation beamwidth θe as a func-
tion of the wavelength λ and the antenna aperture D.
For example, at 95 GHz and a wavelength of 3 mm, a
1.17-deg beam results from a 150-mm antenna aperture. In
reality, the aperture is not uniformly illuminated, as that
results in higher sidelobes, and the beamwidth resulting
from a weighted illumination is significantly wider, typi-
cally greater than 1.5 deg. A narrower beam produces more
accurate terrain maps and obstacle detection. However, an-
tenna size is limited by robot size and spatial constraints.
Most airborne radar applications sense targets in the an-
tenna far-field region where the radiated power density
varies inversely with the square of the distance and where
the antenna pattern remains constant for each angle. The
far-field region is commonly considered to begin approxi-
mately at a distance Rmin (Skolnik, 1981)

Rmin � 2
D2

λ
. (2)

Relation (2) results in Rmin � 16 m for the radar used in
this study. Therefore, UGV-based ground perception tasks
require short-range sensing because most of the targets
fall within the near-field region, where the antenna pat-
tern is range dependent and the average energy density
remains fairly constant at different distances from the an-
tenna (Slater, 1991). Near-field effects do not prevent sens-
ing close to the radar but suggest complex beam geometries
and more difficulty in data interpretation.

In this research, the radar is directed at the front of the
vehicle with a constant forward pitch to produce a graz-
ing angle β of about 11 deg in order to survey the environ-
ment, as shown in Figure 3. The origin of the beam at the
center of the antenna is O. The proximal and distal borders
of the footprint area illuminated by the divergence beam
are denoted with A and B, respectively. The height of the
beam origin with respect to the ground plane is h. The slant
range of the radar bore sight is R0, and the range to the
proximal and distal borders is denoted with R1 and R2,
respectively. Near-grazing angles stretch the pencil-beam
footprint, resulting in range-echo spread, as illustrated in
Figure 4. In principle, the computation of the area on the

Figure 3. Scheme of a pencil beam (of beamwidth θe) sensing
terrain at grazing angle β.

Figure 4. Expected power return from grazing angle percep-
tion.

ground surface that is instantaneously illuminated by the
radar depends on the geometry of the radar boresight,
elevation beamwidth, resolution, and angle of incidence
to the local surface. Two different geometries can be de-
fined: the pulse length–limited case and the beamwidth-
limited case. The pulse-limited case is defined in which the
so-defined radar’s range resolution dR, projected onto the
surface, is smaller than the range extent of the total illumi-
nated area. This is the case of the ground echo, as explained
in Figure 3. For this geometry, the instantaneously illu-
minated resolution cell is approximately rectangular. Con-
versely, the beam-limited case is defined for a geometry in
which the radar range resolution projected onto the ground
is larger than the range extent of the area illuminated by the
radar beam. The resolution cell in this case is elliptical.

4. GROUND ECHO MODELING

A theoretical model of the ground echo in the radar image is
developed. It provides prediction of the range spread of the
ground return along with the expected power spectrum.

Journal of Field Robotics DOI 10.1002/rob
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4.1. Ground Echo: Geometry

Based on the configuration of the radar onboard the vehicle,
a good estimate of the expected range spread of the ground
return can be obtained by modeling the radar as a coni-
cal pencil beam. For our radar system, the cone aperture
is found experimentally as the half-power point. This re-
sults approximately in θe = 3 deg. By intersecting the pen-
cil beam with the ground plane, it is possible to obtain a
prediction of the ground range spread as a function of the
azimuth angle α and the tilt of the vehicle. It is assumed
that the position of the radar relative to the vehicle frame

RW
V =

⎛
⎝cos ψ · cos θ cos ψ · sin θ · sin φ − sin ψ · cos φ cos ψ · sin θ · cos φ + sin ψ · sin φ

sin ψ · cos θ sin ψ · sin θ · sin φ + cos ψ · cos φ sin ψ · sin θ · cos φ − cos ψ · sin φ

− sin θ cos θ · sin φ cos θ · cos φ

⎞
⎠ , (4)

is known by initial calibration and fixed during travel
(Underwood, Hill, Peynot, & Scheding, 2010). With refer-
ence to Figure 5, five important reference frames can be
defined: a world reference frame (WRF) {Ow, XwYwZw}, a
vehicle reference frame (VRF) {Ov, XvYvZv}, a base radar
reference frame (BRF) {O, XR0YR0ZR0}, and a radar refer-
ence frame (RRF) {O,XRYRZR}. Each coordinate frame rep-
resents one step in the kinematic chain from the world to
the RRF. The RRF is characterized by the XR axis instan-
taneously coincident with the sensor boresight. During the
radar sweep, the RRF will be rotated of the scan angle α

around the ZR0 axis of the BRF. In general, a given point P

of the environment can be defined in the RRF by the coor-
dinates P R = (P R

x , P R
y , P R

z ). The same point will have coor-
dinates in the WRF P W = (P W

x , P W
y , P W

z ) that can be deter-
mined as

P W = RW
R · P R + tWR , (3)

where RW
R is the rotation matrix of the RRF with respect

to the WRF and tWR represents the coordinates of the origin
O of the RRF in the WRF. RW

R can be expressed as a com-
position of successive rotations along the kinematics chain:

Figure 5. Nomenclature for the reference frames.

RW
R = RW

V · RV
R0 · RR0

R , Ri−1
i being the rotation from a coor-

dinate frame i to a previous frame i − 1. Without loss of
generality, we can simplify Eq. (3) under the assumption of
BRF perfectly aligned with the VRF, i.e., RV

R0 = I3. The ro-
tation matrix RW

V can be expressed in terms of a set of three
independent angles known as Euler angles. In our imple-
mentation, we adopted the so-called ZYX Euler angles φ,
θ , and ψ , usually referred to as roll, pitch, and yaw angles,
respectively. The matrix RR0

R describes the simple rotation
of α around the ZR0 axis of the RRF with respect to the
BRF:

RR0
R =

⎛
⎝cos α − sin α 0

sin α cos α 0
0 0 1

⎞
⎠ . (5)

We can now derive explicitly the third row of Eq. (3) as

P W
z = r3,1 · P R

x + r3,2 · P R
y + r3,2 · P R

z

(
tWR

)
z
, (6)

where ri,j are the components of the compound rotation
matrix RW

R . The intersection of the radar boresight with the
ground that we assume as perfectly planar will have coor-
dinates in the RRF P R = (R0, 0, 0), R0 being the slant range.
The projection of P along the ZW axis is null, i.e., P W

z = 0,
and (tWR )z = h is the z coordinate of the radar frame origin
in the WRF. Replacing into Eq. (6), one gets the expected
slant distance R0 as a function of the azimuth angle and the
tilt of the robot:

R0 = h

r3,1
= h

cos θ · sin α · sin φ − sin θ · cos α
. (7)

Similarly, the range of the proximal and distal borders R1
and R2 (points A and B in Figure 3) can be estimated by
adding to the kinematic chain a final rotation of ±θel , where
θel = θe/2, around the YR axis of the RRF,

R1 = h

cos θel(cos θ sin α sin φ − sin θ cos α) − cos θ cos φ sin θel

,

(8)

R2 = h

cos θel(cos θ sin α sin φ − sin θ cos α) + cos θ cos φ sin θel

.

(9)

In Figure 6, the ground echo spread as obtained by the
geometric model is overlaid on the radar image using black
dots. Figure 6 refers to the previous scenario considered
in Figure 1 when the vehicle surveys a large area without

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. Ground echo spread obtained by the theoretical model (black dots) overlaid on the radar image expressed in polar
(a) and Cartesian (b) coordinates. Note that the azimuth angle is defined positive when clockwise in the convention used in this
research.

experiencing any significant tilt. The model matches the
radar data very well. In Figure 7, a more complex radar
image is shown in which the vehicle travels at a speed of
0.5 m/s with roll and pitch angles of 6.1 and 4.5 deg, re-
spectively. The prediction of the model is again very good.
For completeness, both radar images are also expressed in
the Cartesian coordinates of the radar frame.

Thus, the geometric model provides a useful means to
accurately predict the spread of the ground return under
the assumption of globally planar ground. This, in turn, al-
lows the definition of a region of interest in the radar image
to improve ground segmentation.

4.2. Ground Echo: Power Spectrum

When a radar pulse is radiated into space, it will propagate
at the speed of light, with most of the power constrained
within a cone defined by the antenna beam pattern. If the
beam intersects with an object, then some of the power will
be scattered back toward the radar, where it can be de-
tected. For a monostatic radar, in which the transmitter and
receiver antenna are colocated, the received power Pr from
a target at distance R can be defined by the radar equation
(Brooker, 2005)

Pr =
(

PtG

4πR2

)
·
(

σ 0
A

4πR2

)
·
(

Gλ2

4π

)
, (10)

where Pt is the transmitted power, G the antenna gain, λ

the radar wavelength, σ 0 the backscatter coefficient (also
known as the reflectivity), and 
A the illuminated area.
The first grouped term in the radar equation represents the
power density (watts per square meter) that the radar trans-
mitter produces at the target. This power density is inter-
cepted by the target with radar cross section σ 0
A, which
has units of area (square meters). Thus, the product of the
first two terms represents the reflected power density at the
radar receiver (again, watts per square meter). The receiver
antenna then collects this power density with an effective
area described by the third term. This interpretation of the
radar equation will be useful later. The computation of the
area 
A, which is instantaneously illuminated, depends on
the location of the radar onboard the vehicle and on the
physical and geometric properties of the radar beam, as de-
scribed in the preceding section (see Figure 3). Under the
assumption of a RRF aligned with the ground, the length of
the illuminated patch is given by


A = dR

cos β
, (11)

where dR is the so-defined range resolution (Brooker, et al.,
2006) and β the grazing angle. It should be noted that the
power return from the ground is extended over a range
of grazing angles and that the backscatter coefficient and
the gain depend on grazing angle. However, the variation

Journal of Field Robotics DOI 10.1002/rob



Reina et al.: Radar-Based Perception for Autonomous Outdoor Vehicles • 901

Figure 7. Ground echo spread obtained by the theoretical model (black dots) overlaid on the radar image expressed in polar
(a) and Cartesian (b) coordinates, in the presence of significant vehicle tilt (roll and pitch angles of 6.1 and 4.5 deg, respectively).
Camera image colocated with the radar (c).

range of the grazing angle is small (about 3 deg in our
case), making the dependence on the backscatter coefficient
weak. This assumption is based on the Georgia Tech land
clutter model (Currie, Hayes, & Trebits, 1992, Chapter 3,
p. 142) that for the configuration used in this research gives
a backscatter coefficient falling in a plateau region with a
little variation in σ 0 with grazing angle [less than 2 dB
(m2/m2)]. Therefore, σ 0 is treated as a constant. The change
in the gain across the beam must be taken into account. The
gain is maximum when the target is located along the an-
tenna’s boresight. However, the gain reduces with angle off
boresight, as defined by the antenna’s radiation pattern. In

our case, a Gaussian antenna pattern can be adopted, as
shown in Figure 8. If we introduce the elevation angle θel,
measured from the radar bore sight and defined as

θel = arcsin
(

h

R

)
− arcsin

(
h

R0

)
(12)

and denoting with θ3dB the 3-dB beamwidth (θ3dB = 3 deg
for our radar), then the antenna gain can be approximated
by (Brooker, 2005)

G = e
−2.776

(
θel

θ3dB

)2

. (13)
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Figure 8. Gaussian antenna pattern.

It should be noted that Eq. (10) holds in the far field.
However, the illuminated ground falls within the near-field
region where the antenna pattern is range dependent and
the average energy density remains fairly constant at dif-
ferent distances from the antenna (Slater, 1991). This allows
one to simplify Eq. (10) as

Pr (R, R0, k) = k
G(R, R0)2

cos β
. (14)

Equation (14) describes the power return of the ground
echo in the radar image as a function of the range R. Note
that for large tilt of the robot, the near-field region assump-
tion may be violated and Eq. (14) would lose its validity.
Figure 9 shows a simulated wide pulse of the ground return
using Eq. (14). The model is defined by the two parameters
k and R0 that can be determined in practice by fitting the
model to experimental data, as explained later. Finally, it is
worth mentioning that for ground clutter, the sidelobe in-
fluence is in general negligible. However, if a target with a
large radar cross section appears in sidelobes, it may pro-
duce significant effects.

In summary, Eqs. (8) and (14) represent two pieces
of information defining the theoretical ground echo in the
radar image. Any deviation in the spread or intensity shape
suggests low likelihood of ground return in a given radar
observation.

5. THE RADAR GROUND SEGMENTATION SYSTEM

A radar image can be thought of as composed of a fore-
ground and a background. The background is referred to
as the part of the image that contains reflections from the
terrain. Radar observations belonging to the background
show a wide pulse produced by the high-incident-angle
surface, but exceptions may exist due to local unevenness
or occlusion produced by obstacles of large cross sections

Figure 9. Simulated power return of the ground echo. The fol-
lowing parameters were adopted in the simulation: k = 70 dB,
R0 = 11.3 m, h = 2.2 m.

in the foreground. In this section, the RGS system is pre-
sented. It aims to assess ground by looking at the image
background obtained by a MMW radar mounted on a mo-
bile robot.

The RGS module performs two main tasks:

• Background extraction from the radar image
• Analysis of the power spectrum across the background

to perform ground segmentation

In the remainder of this section, each stage is described in
detail.

5.1. Background Extraction

A prediction of the range spread of the ground echo as a
function of the azimuth angle and the tilt of the vehicle
can be obtained using the geometric model presented in
Section 4.1. It should be recalled that the model is based
on the assumption of globally flat ground. Therefore, dis-
crepancies in the radar observations may be produced
by the presence of local irregularities or obstacles in the
radar-illuminated area. To relax the assumption of global
planarity and compensate for these effects, a change de-
tection algorithm is applied in the vicinity of the model
prediction. Specifically, the cumulative SUM (CUSUM)
test is used, which is based on the cumulative sums
charts to detect systematic changes over time in a mea-
sured stationary variable (Page, 1954). The CUSUM test
is computationally very simple and intuitively easy to
understand and can be motivated to be fairly robust to
different types of changes (abrupt or incipient). In words,
the CUSUM test looks at the prediction errors εt of the
power intensity value. Under the assumption of nor-
mally distributed data, εt = (xt − x̄t )/σ , where xt is the
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last point monitored, x̄t the mean of the process, and σ

the standard deviation. εt is a measure of the deviation of
the observation from the target: the farther the observation
is away from the target, the larger εt . The CUSUM test gives
an alarm when the recent prediction errors have been suffi-
ciently positive for a while. Mathematically, the test is for-
mulated as the following time recursion:

g0 = 0,

gt = gt−1 + εt − ν,

(15)
gt = max(0, gt ),

if gt > th, then alarm and gt = 0,

where ν and th are design parameters. The CUSUM test ex-
pressed by Eqs. (15) gives an alarm only if the power in-
tensity increases. When negative changes need to be found
as well, the min operation should be used instead, and this
time a change has been found when the value of gt is below
the (negative) value of the threshold value th. The combina-
tion of two such CUSUM detectors is referred to as a two-
sided CUSUM test. A typical result from the change detec-
tion algorithm is shown in Figure 10(a). The radar signal
obtained from a single azimuth observation (α = 32 deg) is
denoted by a solid gray line. The theoretical prediction of
the range spread of the ground return is shown by black
points at the bottom of Figure 10(a) representing the range
of the central beam, the proximal and distal borders, points
R0, R1, and R2, respectively. When a positive change in the
radar signal is found in the vicinity of the proximal border
(in practice within a 1-m window centered on R1), a flag is
raised (dotted black line). The alarm is lowered when a neg-
ative change is detected in the vicinity of the distal border.
The ground echo can then be extracted (portion of the sig-
nal denoted in black) from the given observation. The pro-
cess can be repeated for the whole scanning range, and the
background of the radar image can effectively be extracted,
as shown in Figure 10(c) referring to the running example
of Figure 1.

5.2. Ground Segmentation

The image background contains ground candidates. To de-
fine a degree of confidence in actual ground echo, the
power return model, presented in Section 4.2, can be fit-
ted to a given radar observation. The hypothesis is that a
good match between the parametric model and the data
attests to a high likelihood of ground. Conversely, a poor
goodness of fit suggests low likelihood due, for example,
to the presence of an obstacle or to irregular terrain. We re-
call that Pr (R) is a function defined by the parameters R0
and k. k can be interpreted as the power return at the slant
range R0, and both parameters can be estimated by data
fitting for the given azimuth angle. By continuously updat-
ing the parameters across the image background, the model

can be adjusted to local ground roughness and produce a
more accurate estimation of R0, as shown later in the pa-
per. A nonlinear least-squares approach using the Gauss–
Newton–Marquardt method is adopted for data fitting
(Seber & Wild, 1989). The initial parameter estimates are
chosen as the maximum measured power value and the
predicted range of the central beam as expressed by Eq. (7),
respectively, limiting the problems of ill conditioning and
divergence.

Output from the fitting process are the updated param-
eters R̄0 and k̄ as well as an estimate of the goodness of fit.
The coefficient of efficiency was found to be well suited for
this application (Nash & Sutcliffe, 2006):

E = 1 −
∑

(t − y)2∑
(t − t̄)2 , (16)

t being the data point, t̄ the mean of the observations, and
y the output from the regression model. E ranges from −∞
to 1, as the best possible value. E reaches 0 when the square
of the differences between measured and estimated values
is as large as the variability in the measured data. In case of
negative E values, the measured mean is a better predictor
than the model. By evaluating the coefficient of efficiency
and the model parameters, ground segmentation can be ef-
fectively performed and radar observations can be labeled
as ground, unknown, and nonground object (i.e., obstacle).

Two typical results are shown in Figure 11. Specifi-
cally, in Figure 11(a), the model matches very well the ex-
perimental data with a high coefficient of efficiency E =
0.96, thus attesting to the presence of ground. Conversely,
Figure 11(b) shows an example in which the goodness of
fit is poor (E < 0); in this case a low confidence in ground
echo is associated with the given observation. In practice, a
threshold ThE is experimentally determined and the obser-
vation i is labeled as ground if Ei exceeds ThE .

However, relying on the coefficient of efficiency only
may be misleading in some cases. Figure 12(a) shows an
example in which a ground patch would be seemingly
detected according to the high coefficient of efficiency (E =
0.91), when there is actually no ground return. To solve this
issue, a physical consistency check can be performed by
looking at the updated value of the proximal and central
range as estimated by the fitting process. For this case, they
are almost coincident (R̄0 = 10.82 m and R̄1 = 10.42 m, re-
spectively) and certainly not physically consistent with the
model described in Section 4. Therefore, the radar observa-
tion is labeled as uncertain ground if the difference between
the central and proximal range is lower than an experi-
mentally defined threshold ThR . An analogue comparison
is done between the distal and central border as well.

In case of uncertain terrain, an additional check is
performed to detect possible obstacles present in the region
of interest, which would appear as narrow pulses of high
intensity. In this respect, it should be noted that, during
operation, the RGS system records the value of k̄, defining
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Figure 10. Ground echo extraction in the radar signal through a change detection approach (a): radar signal at scan angle α =
32 deg (gray solid line), extracted ground echo (solid black line), change detection flag (dotted black line). Note that the opposite
(i.e., 180-deg scan angle difference) radar signal is also plotted (gray dotted line); it points skyward, and no obstacle is detected in
it, thus showing the typical noise floor in the radar measurement. Original radar image (b); radar image background (c).

a variation range for the ground-labeled observation.
Typically, k̄ was found to range from 73 to 76 dB. If a
percent relative change in the maximum intensity value
between the uncertain-labeled observation tmax and the
model ymax is defined, 
P = (tmax − ymax)/tmax, then an
obstacle is detected when 
P exceeds an experimentally
defined threshold Thp and, at the same time, tmax is greater
than the maximum value of k̄. An example of obstacle
(labeled as nonground) detection is shown in Figure 12(b).

In summary, the classification approach described in
Table II can be defined. Those rules express our physical
understanding of the problem. The rule set is not unique;
new rules may be thought of and implemented to improve
the output of the system.

It should be noted that when the radar observation
from a given azimuth angle is successfully labeled as
ground or obstacle, an estimate of its range distance can
also be obtained. In the case of ground, the whole range
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Table II. Set of classification rules for the RGS method.

Goodness of fit Parameters of the regression model
(ThE = 0.8) (ThR = 1.5 m, ThP = 10%)

Class E (R̄0 − R̄1) (R̄2 − R̄0) 
P k̄ (dB)

Ground ≥ ThE > ThR > ThR < ThP 73–76
Unknown < ThE — — < ThP —
Non-ground < ThE — — ≥ ThP > k̄max

Figure 11. Ground segmentation by model fitting: good fit labeled as ground (a); poor fit labeled as uncertain ground (b).

spread of the ground echo can be theoretically evaluated
along this azimuth angle (see Figure 4), thus providing a
3D point cloud with a single radar observation. However,
for simplicity’s sake, we refer only to the range estimation
of the radar bore sight R0 in this paper. If an obstacle is
flagged instead, the RGS system outputs the range corre-
sponding to the maximum intensity value of the detected
pulse. Conversely, no range estimation is possible in the
case of uncertain classification.

6. EXPERIMENTAL RESULTS

In this section, experimental results are presented to vali-
date our approach for ground segmentation using a MMW
radar. The RGS system was tested in the field using the
CORD UGV (see Figure 2). The test field was located in a
rural environment at the University of Sydney’s test facility
near Marulan, NSW, Australia. It was mainly composed of
a relatively flat ground with sparse low grass delimited by
fences, a static car, a trailer, and a metallic shed, as shown
in Figure 13(a). During the experiment, the CORD vehicle
was remotely controlled to follow an approximately closed-

loop path with an average travel speed of about 0.5 m/s
and a maximum speed of 1.5 m/s. Variable yaw rates were
achieved with a maximum of 1.12 rad/s (i.e., 64 deg/s)
and roll and pitch angles of up to 5 deg. Along the path,
the robot encountered a 40-cm trench and various slopes
of medium–low inclination. In this experiment, the RTK
DGPS/INS unit and a high-precision 2D SICK laser range
scanner provided the ground truth with an average stan-
dard deviation per point of approximately 0.053 m [more
details can be found in Underwood et al. (2010)]. The full
data set is public and available online (Peynot, Scheding,
& Terho, 2010). The path followed by the robot is shown in
Figure 13(b) as estimated by the onboard RTK DGPS-INS
unit. It resulted in a total distance of 210 m traveled in about
6.5 min.

6.1. Ground Segmentation

Figures 14–16 show some typical results obtained during
the experiment. Specifically, Figure 14 refers to the instant
T1 = 34.1 s [see Figure 13(b)] when the vehicle traversed a
large, relatively flat area delimited by fences to the right
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Figure 12. Ground segmentation by model fitting: seemingly high fit labeled as uncertain ground due to physics inconsistency
with the model (a); narrow pulse labeled as obstacle (b).

Figure 13. The Marulan test field (a) and the path followed by the UGV during the experiment (b).

and a car to the far left. Figure 14(a) shows the radar in-
tensity image overlaid with the results obtained from the
RGS system. Ground labels are denoted by black dots (or
by red dots in the online version of the paper), a black cross
marks uncertain terrain, and nonground (i.e., obstacle) is
denoted by a black (red) triangle. In Figure 14(b), the re-
sults are projected over the image plane of the camera for
visualization purposes only. Finally, a comparison with the
laser-based ground truth is provided in Figure 14(c), which
demonstrates the effectiveness of the proposed approach
for ground segmentation. As can be seen from these fig-
ures, the RGS system correctly detected the flat ground area
in front of the robot and the obstacle to the left.

Figure 15 shows a different scenario at time T2 = 320 s
[see Figure 13(b)] with a stationary car to the right of
the robot. The RGS method was successful in labeling the
ground. Uncertain terrain was flagged along the portion of
the background occluded by the car and to the far left due

to the presence of highly irregular terrain. Finally, at time
T3 = 350 s the robot faced a metallic shed with irregular
terrain to the far left, as shown in Figure 16. In this scene
for completeness, nonground labels detected in the fore-
ground as high-intensity narrow pulses are also shown us-
ing black outlined triangles (or red outlined markers in the
online version of the paper). The RGS module was correct
in segmenting the ground to the left, indicating the pres-
ence of a large obstacle in front of the robot and of low con-
fidence in ground to the right and far left of the scene.

Overall, the RGS system was tested over 1,100 radar
images, each containing 63 azimuth observations for a to-
tal of 69,300 classifications. As a measure of the segmen-
tation performance, the false-positive and false-negative
rates incurred by the system during classification of ground
and nonground were evaluated by comparison with the
ground-truth laser data. To this aim, a previously pro-
posed method for segmentation of laser data [GP-INSAC;
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Figure 14. Results obtained from the RGS system for a relatively flat scenario. A large obstacle is detected to the far left: output of
the RGS system (a); results overlaid on the camera image (b) and on the laser-generated ground-truth map (c). Note that the map
is referred to the VRF. Also note that the uncertain observations are ranged indicatively according to the prediction of the model
described in Section 4.1.

Douillard, Underwood, Kuntz, Vlaskine, Quadros, et al.,
(2011)] was applied to the ground-truth map to extract the
true ground and true obstacles. As described in Section 5.2,
whenever the RGS system labels data along a particular
scan azimuth as ground or nonground, a range reading is
returned. When combined with the localization estimation
of the vehicle, this provides a 3D georeferenced position for
the labeled point (see also Section 6.2).

A ground-labeled observation is counted as a false
positive if a closest neighbor cannot be found in the true
ground data within a minimum distance (less than 0.5 m in

our case). Similarly, a non-ground-labeled point is counted
as a false positive if it is not sufficiently close to the nearest
true obstacle datum.

False negatives arise when the ground/nonground is
present in the image but the RGS system is not able to label
it, returning the label of unknown instead. Because the sys-
tem cannot provide a range measurement for the unknown-
labeled observations, the rate of false negatives can be eval-
uated only by manual inspection in each radar image.

The results are collected in Table III. The rate of false
positives in ground-labeled observations was 2.1%, likely
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Figure 15. Results obtained from the RGS system in the presence of a large obstacle to the right: output of the RGS system (a);
results overlaid on the camera image (b) and on the laser-generated ground-truth map (c).

Table III. Segmentation results obtained from the RGS system.

False False
Class Observations positives (%) negatives (%) Accuracy

Ground 40,150 2.1 3.5 Ez = 0.051 m
Nonground 657 0.0 5.6 Exy = 0.065 m

The false-positive rate was evaluated by comparison with the ground-truth laser data. The percentage of false negatives was obtained by
manual inspection. See Section 6.2 for more details on the definition of Ez and Exy .
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Figure 16. Results obtained from the RGS system with the robot facing a metallic shed: output of the RGS system (a); results
overlaid on the camera image (b) and on the laser-generated ground-truth map (c).

due to seeming matches produced by obstacles present in
the illuminated area. Typical examples of ground false pos-
itives are marked in Figure 16(b). No false positives were
detected in the non-ground-labeled observations.

The false-negative rate for the ground-labeled obser-
vations was 3.5%. A typical example shown in Figure 14(b)
is due to low power return of the radar observation. For
non-ground-labeled observations, the false-negative rate
was 5.6%.

The average rate of unknown labels in a single radar
image was 19.8%, including occluded areas and false neg-
atives due to radar misreading or low resolution (i.e., foot-
print overlapping part of an object and ground). It should
be noted that false negatives mostly appear in the radar

image as spurious observations that do not affect the gen-
eral understanding of the scene, as shown in the example of
Figure 14(b).

6.2. Accuracy Analysis

The accuracy of the RGS system in ranging the ground was
assessed through comparison with the true ground map.
For the ground-labeled observation i, the RGS system out-
puts the relative slant range R̄0,i . Through geometric trans-
formation, as described in Section 4, it is possible to esti-
mate the corresponding 3D point in the WRF Pi and to
compare it to the closest neighbor of the ground-truth
map P

gt
i . Because the laser-generated map is available as a
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Figure 17. Segmentation results for the entire test: radar-
generated map, shown as raw data obtained from the RGS sys-
tem (a); same radar data after Delaunay triangulation (b); and
laser-generated map after Delaunay triangulation (c). Note that
the RGS system outputs only the location of the detected obsta-
cles and not their elevation.

regularly sampled grid with square cells of 0.3 m, where the
center of the grid represents the average height of the cell
points, a mean square error in the elevation can be defined
as

Ez = 1
n

√√√√ n∑
i=1

(
Pz,i − P

gt
z,i

)2
. (17)

Figure 18. Field test for the low-visibility experiments.

In this experiment, the RGS system detected ground returns
in n = 40,150 observations with an error of Ez = 0.051 m
and an associated variance of σz = 0.002 m2. If the value
of R0 is measured conventionally taking the intensity peak
of the ground return, the error grows to Ez = 0.251 m and
σz = 0.181 m2. Similarly, the accuracy of the system in mea-
suring the position of detected obstacles can be evaluated
by comparison with the nearest datum in the true obstacle
map. A mean square error can be defined this time as

Exy = 1
n1

√√√√ n1∑
i=1

(
Px,i − P

gt
x,i

)2 + (
Py,i − P

gt
y,i

)2
. (18)

The RGS system measured nonground returns in n1 = 657
observations with an error of Exy = 0.065 m and a variance
of σxy = 0.0015 m2, thus proving the effectiveness of the
proposed approach.

For a complete overview of the system performance,
the results obtained from the RGS module along the entire
experiment are used to build a map of the environment,
as shown in Figure 17(a). The ground-labeled observations
are denoted by gray scale dots colored according to the el-
evation, whereas the obstacle-labeled points are shown by
black points for higher contrast. The path followed by the
robot is also shown by a solid black line. Figure 17(b) de-
picts the same data after a postprocessing step applying a
Delaunay triangulation. Finally, in Figure 17(c) the laser-
generated map is shown for comparison using the same
color scale and Delaunay triangulation. This figure demon-
strates that the RGS system is capable of providing a clear
understanding of the environment, suitable for robotic ap-
plications including scene interpretation and autonomous
navigation.

6.3. Persistence

To prove the robustness to low-visibility conditions, the
RGS system was applied to a second data set. In this
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Figure 19. Results obtained from the RGS system with the
robot facing a fixed area in clear visibility condition: output of
the RGS system (a), results overlaid on the camera image (b),
and laser readings projected onto the radar sensor reference
frame (c).

Figure 20. Results obtained from the RGS system in the pres-
ence of heavy dust: output of the RGS system (a), results over-
laid on the camera image (b), and laser readings projected onto
the radar sensor reference frame (c).
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experiment, the vehicle was stationary while facing a fixed
area in changing environmental conditions. The purpose
was to assess the persistence of the CORD UGV sensor suite
in the presence of a heavy dust cloud. Figure 18 shows the
test field including a metal frame, artificial objects of var-
ious shapes and geometry, and some equipment, as well
as natural features such as a tree branch (see Peynot, et al.,
2010, for a complete description of the object sizes and posi-
tions). The test started in clear visibility conditions, and af-
terward a dust cloud was artificially generated by blowing
air to a dusty soil pile using a high-power air compressor.
The dust was carried by the wind from the left to the right
of the scene, and it moved between the test area and the
sensors, obstructing significantly their field of view (FOV).

A typical result obtained from the RGS system in nom-
inal visibility condition (absence of obscurants) at time
T1 = 5 s is shown in Figure 19(a) overlaid on the radar in-
tensity image. Ground labels are denoted by green dots;
a black cross marks uncertain terrain. Nonground labels,
present in the foreground as high-intensity narrow pulses,
are also shown, and they are denoted by red triangles. In
Figure 19(b), the same results are projected over the im-
age plane of the camera for visualization purposes only. Fi-
nally, a comparison with one of the 2D SICK lasers [Laser-
Horizontal in Figure 2(b)] is provided in Figure 19(c), where
the data were transformed into the radar sensor reference
frame. The discrepancies between the two sensors can be
explained when considering that their scan planes do not
intersect perfectly on the ground and they are are gener-
ally not aligned; as a result they “look” at different sections
of terrain and at objects from different heights. As can be
seen from these figures, the RGS system correctly labeled
the ground area and most of the obstacles present in the
scene. The accuracy was also consistent with the values ob-
tained in Section 6.2: the mean square error in the eleva-
tion of the ground-labeled observation was Ez = 0.050 m
(σz = 0.002 m2), whereas the error in the position of the ob-
stacles was Exy = 0.06 m (σxy = 0.156 m2).

The effects of the dust cloud on the robot perception
are shown in Figure 20 for a typical sample scan at time
T2 = 44 s. The laser was largely affected by the dust, with
most of the readings unusable due to reflections from air-
borne particles [Figure 20(c)]. Similarly, vision data were
significantly corrupted due to dust occlusion, as shown
in Figure 20(b). In contrast, radar was less susceptible to
the presence of obscurants and the output of the RGS
was almost identical to the one obtained in clear condi-
tion. The change in the range accuracy of the ground- and
nonground-labeled measurement was also negligible, thus
proving the robustness and persistency of the proposed ap-
proach to challenging conditions.

7. CONCLUSIONS

In this paper, a novel method for performing ground seg-
mentation was presented using a MMW radar mounted on

an off-road vehicle. It is based on the development of a
physical model of the ground echo that is compared against
a given radar observation to assess the membership confi-
dence to one of the three broad categories of ground, non-
ground, and unknown. In addition, the RGS system pro-
vided improved range estimation of the ground-labeled
data for more accurate environment mapping when com-
pared to the standard highest-intensity-based approach. A
comprehensive experiment in the field demonstrated the
overall effectiveness of the proposed approach. The RGS
method was able to correctly label ground with rates of
false positive and false negative of 2.1% and 3.5%, respec-
tively, and with 0.051-m accuracy, which is a considerable
improvement over the reference of 0.251 m. The system was
also proved to be effective in heavy-dust conditions, show-
ing its merits over laser and vision sensing.

This technique can be successfully applied to enhance
perception for autonomous off-road vehicles in natural sce-
narios or more generally for ground-based MMW radar ter-
rain sensing applications.
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