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FLane: An Adaptive Fuzzy Logic
Lane Tracking System for Driver
Assistance
In the last few years, driver assistance systems are increasingly being investigated in the
automotive field to provide a higher degree of safety and comfort. Lane position deter-
mination plays a critical role toward the development of autonomous and computer-aided
driving. This paper presents an accurate and robust method for detecting road markings
with applications to autonomous vehicles and driver support. Much like other lane de-
tection systems, ours is based on computer vision and Hough transform. The proposed
approach, however, is unique in that it uses fuzzy reasoning to combine adaptively geo-
metrical and intensity information of the scene in order to handle varying driving and
environmental conditions. Since our system uses fuzzy logic operations for lane detection
and tracking, we call it “FLane.” This paper also presents a method for building the
initial lane model in real time, during vehicle motion, and without any a priori informa-
tion. Details of the main components of the FLane system are presented along with
experimental results obtained in the field under different lighting and road conditions.
�DOI: 10.1115/1.4003091�
Introduction

Within the last few years, research into intelligent vehicles has
reatly expanded. Systems that monitor driver intent, warn drivers
f lane departure, or provide vehicle assistance are all emerging.
pecifically, lane detection and tracking is a well-researched prob-

em in computer vision with a wide range of applications in au-
onomous vehicles and driver support systems. Lane detection can
e employed in the following driver assistance applications �1�:

• Lane-departure-warning system. The system predicts the
trajectory of the vehicle with respect to the lane boundary
�2� �Fig. 1�a��.

• Driver-attention monitoring system. The system monitors
the driver’s attentiveness to the lane-keeping task using pa-
rameters such as the smoothness of the lane following �3�
�Fig. 1�b��.

• Automated vehicle-control system. The system automatically
guides safely the vehicle within the lane by controlling the
lateral position error �4� �Fig. 1�c��.

Finding white markings on a dark road can turn into a very
omplex problem when shadows, physical barriers, occlusions by
ther vehicles, changes in road surfaces, and different types of
ane markings come into play. A robust and efficient lane detec-
ion system must be able to filter out all disturbances and extract
he markings of interest from cluttered roadways in order to pro-
uce an accurate and reliable estimate of the vehicle position rela-
ive to the road. In Fig. 2, a sample image set demonstrates the
ariety of road and environmental conditions that can be encoun-
ered. Figure 2�a� shows a scene where lane detection can be
onsidered relatively easy thanks to a clearly defined, solid mark-
ng and a uniform road texture. In Fig. 2�b�, extraction of road

arking is more difficult due to the presence of a curb and a
anhole cover. Figure 2�c� shows a more complex road marking
ith transversal solid lines due to side road enters, while in Fig.
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2�d� a nonuniform road texture is shown. Finally, Figs. 2�e� and
2�f� refer to low lighting scenes due to overpasses and night time.

Many researchers have developed lane detectors based on vari-
ous techniques. A commonly used approach is the Hough trans-
form, which fits lines to detected edges �5,6�. This approach typi-
cally suffers from heavy computational requirements that make it
a difficult real-time implementation and can easily fail in situa-
tions where many extraneous lines exist. Neural networks have
been used to attempt to detect lanes and control vehicles �7� but
have difficulties on roads not included in their training set. Tech-
niques using tangent vectors have also been demonstrated to be
quite robust on well-marked roads but can fail when lane mark-
ings are not well-defined �8�. Other researchers have attempted to
overcome problems of differing lane markings by using multiple
detectors. For example, Gehrig et al. �9� detected bots dots on
California highways using specific matched filters and detected
solid lane markings using more classical methods. Others, such as
the authors of Refs. �10–12�, proposed the use of particle filtering
to improve robustness to lighting and road changes, while Ber-
tozzi and Broggi �13� developed the generic obstacle and lane
detection �GOLD� system for robust obstacle and lane detection.
McCall and Trivedi �14� used steerable filters for accurate and
robust lane marking detection. Frequency-based techniques, such
as the lane-finding in ANother domAin �LANA� system �15�, have
been shown to be effective in dealing with extraneous edges.
Other techniques, such as the rapidly adapting lateral position
handler �RALPH� system �16�, based the lane position on an
adaptive road template. Such techniques generally assume a con-
stant road surface texture and can fail in situations like the one in
Fig. 2�d�. While these methods are all very effective at performing
lane detection in several contexts, they tend to be highly influ-
enced by the road type or conditions. Robust lane detection re-
mains, therefore, an open research area, since, in order to have a
robust lane detector, the system must be invariant to different road
markings, road conditions, lighting changes, shadowing, and oc-
clusions.

In this paper, we investigate an alternative method based on a
Hough transform enhanced by fuzzy reasoning to provide a real-
time, robust, and accurate lane detection and tracking system in
highly dynamic environments. Fuzzy logic allows one to cope
with complex dynamical contexts that are difficult to model with

mathematical approaches �17,18�. A few authors have proposed
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fuzzy systems in the context of lane detection in order to improve
specific functions, such as edge detection �19,20�. Here, instead,
fuzzy logic serves as a general framework to deal with the whole
process of lane detection and tracking. Although lane detection
systems have been extensively studied, one commonly-recognized
issue is the lack of uniform performance characterization method-
ologies �1�. Several metrics have been proposed but they all tend
to be very specific. In addition, most proposed algorithms have
shown limited numerical results or sample images to demonstrate
the performance of the algorithms, thus making a quantitative
comparison across different classes of algorithms very difficult. In
this paper, we evaluate the entire vision-based algorithm for lane
tracking by measuring the occurrence rate of false positives, false
negatives, and misidentifications.

A key issue of lane detection systems is that of defining an
adequate model for the lane marking to be tracked over subse-
quent images. This is particularly challenging at the start of the
vehicle motion, when no prior information is available, and when-
ever the system fails and starts over. In this respect, the FLane
system features a special module, referred to as dynamic model
building �DMB�. The DMB module provides online lane model
construction by processing a short sequence of images using what
we call the cumulative Hough matrix �CHM� in conjunction with
fuzzy logic operations.

Extensive testing of the proposed approach is performed with a
commercial automobile equipped with a low cost webcam and
operating under different driving and environmental conditions.
The results demonstrate that fuzzy reasoning is a proper frame-
work to operate under uncertainty in visual data for lane detection
and drive monitoring applications. Theoretical details of the
FLane method and its modules are provided in Sec. 2. Experimen-
tal results to validate this approach and assess the system perfor-
mance are presented in Sec. 3. Finally, Sec. 4 concludes this pa-
per.

2 The FLane System
The FLane module performs its task using a robust Hough

transform, enhanced by fuzzy logic operations, which provide the
system with the ability to adapt rapidly to varying operational
conditions. In this section, a theoretical analysis of the method is
presented, also providing experimental evidences of its effective-
ness in the field.

d conditions: „a… simple road with solid
and manhole cover, „c… transversal solid

pavement texture, „e… freeway overpass
arking contrast, and „f… low lighting and
ig. 1 Driver assistance systems that require lane position:
a… lane-departure warning, „b… driver-attention monitoring, and
c… vehicle-control
Fig. 2 Sample images of road markings an
lane marking, „b… disturbances due to curb
lines due to side road enters, „d… nonuniform
causing lighting change and reducing road-m
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2.1 Lane Model. The presence of a sideward-facing camera
ounted on the vehicle body with a field of view on the ground

lane corresponding to a 90 cm long�120 cm wide area is as-
umed. It is also considered that the location of the camera rela-
ive to the ground is known and fixed during travel. Although this
ssumption is of limited validity since a car’s suspension system
llows body tilting, in a previous work �21�, this approach was
roved to be rather robust to relatively small changes in the posi-
ion and orientation of the camera with respect to the ground.
nder the further assumption that the portion of the lane marking

LM� in the image is relatively small, the lane marking curvature
an be neglected, and it is possible to refer to a lane model com-
osed of a pair of parallel lines with constant offset. In the image
eference frame S, denoted with P1= ��1 ,�1� and P2= ��2 ,�2�, the
olar parameters of these two lines, namely L1 and L2 as ex-
lained in Fig. 3, the pose P= �� ,�� of the LM model can be
efined as

� =
�1 + �2

2
�1�

� =
�1 + �2

2
�2�

In addition, the lane marker is characterized by an intensity
evel Im, which is defined as the average gray level of the pixels
omprised between the lane marker borders. Real world informa-
ion can be obtained with good accuracy from image data by
nverse perspective projection techniques, and the LM model can
e defined in the real world �Fig. 4� by the following parameters

• the absolute value of the relative angle between the borders
L1w and L2w

� = ��1 − �2� �3�

�1 and �2 being the orientation of the vehicle with respect to
L1w and L2w, respectively;

• the absolute value of the width W of the marker, which is
equal to

W = �d1 − d2� �4�

d1 and d2 being the minimum distance of the vehicle relative
to L1w and L2w, respectively.

The variation range for both � and W can be considered known
y road legislation. This turns into two constraints that can be
xploited for lane detection, i.e.,

ˆ

ig. 3 Model of the lane marking in the image plane. Note that
he parameters �1, �2, and � are expressed in pixels.
� = � �5�
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W = Ŵ �6�

Note that �̂ is null, being the lines forming the marker parallel,

and Ŵ ranges approximately between 150 mm and 200 mm, de-
pending on road type.

2.2 Lane Tracking. The FLane system is composed of two
main submodules:

1� The fuzzy edge detection (FED) module. This module pro-
vides an intelligent fuzzy binarization of the image that al-
lows the classical Hough transform to be applied with a
substantially reduced computational requirement and a more
robust and accurate implementation.

2� The fuzzy lane recognition (FLR) module. This module rec-
ognizes, between the lines extracted from the image, those
lines that best fit to the lane marking model. The selection is
performed by combining geometrical and intensity data of
the image through fuzzy reasoning.

It should be noted that the FLane system updates the reference
lane at each new acquisition. One critical aspect connected with
this approach lies in building the initial model and updating it
after the system fails to detect the lane marker �e.g., when false
negatives arise or when no marker is present in the scene�. In
order to solve this specific problem, the FLane system employs
the DMB module, as explained in Sec. 2.2.3. It is also worth
mentioning that the knowledge of the pose of the lane marker in
one image is used to determine the region of interest �ROI� to be
processed for lane detection in the next frame. This makes the
lane search more accurate and reduces computational requirement
by eliminating much of the scene. Theoretical details of the FED,
FLR, and DMB modules are presented in the remainder of this
section.

2.2.1 Fuzzy Edge Detection. Hough transform is a commonly
used technique to fit lines to detected edges. However, it typically
suffers from heavy computational time and its performance
largely depends on the result of the edge detection process. In
order to apply effectively the Hough transform in real time and in
a highly dynamic environment, the FLane system employs a fuzzy

Fig. 4 Model of the lane marking in the real world. Note that
the distances d1 and d2 are expressed in millimeters.
logic-based edge detection algorithm. The proposed approach is
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ntended to extract white lane markings regardless of variations in
ighting conditions and road texture characteristics. It is suited to
etect both solid and segmented lines. The basic idea of the FED
odule is that of extracting image points that satisfy two condi-

ions: to have a specified gray level and to belong to a border
egion. To this end, a given pixel in the ROI is processed by what
e define an intensity indicator �Ii� that estimates the likelihood

hat this pixel belongs to the lane model. The Ii compares the
ntensity level of the pixel with the average intensity value of the
ane marker detected in the previous frame. Our hypothesis is that

large difference in intensity value suggests that the pixel does
ot belong to the model. We express this hypothesis using fuzzy
ogic. The triangular membership function used for the Ii, i.e., the
urve that maps each point in the input space to a membership
alue or grade between zero and one, is shown in Fig. 5. The
ntensity indicator uses one input and one output. The input is the
elative change in the intensity level of the pixel j of the ROI of
mage i with respect to the previous frame i−1 defined as

�Ij
i =

Ij
i − Im

i−1

Im
i−1 � 100 �7�

here Ij
i is the intensity level of the pixel j of the frame i and Im

i−1

s the average intensity level of the lane marking detected in the
rame i−1.

The output is a dimensionless factor ranging from zero to one
hat expresses the degree of confidence we have that the pixel j
elongs to the model. It is important to notice that the perfor-
ance of the FED module greatly depends on the value of the

ower and upper limits of the triangular membership function,
Imin
i and �Imax

i , respectively, in Fig. 5. In the proposed imple-
entation, �Imax

i is well-experimentally determined as 90%, and
Imin
i varies adaptively, depending on the average lighting change

ith respect to the previous frame. The details of the fuzzy-based
egulation of the lower bound are included in Appendix for
ompleteness.

A typical result of the thresholding using the Ii is shown in Fig.
for a sample image. Specifically, Fig. 6�a� shows the original

mage ROI. Figure 6�b� depicts the binary image obtained by the
uzzy thresholding, whereas Fig. 6�c� demonstrates the result of
n independent Canny’s edge detection �22�. Two binary images
re available: one containing points whose gray level is similar to
he gray level expected for the lane marker �Fig. 6�b�� and one
ontaining strong edge points �Fig. 6�c��. A final binary image,
uitable for Hough manipulation, can be obtained with a Boolean

ig. 5 Membership function of the intensity indicator. If the
egree of membership is greater than a threshold T „T=0.7 in
ur case…, then the pixel is accepted, and it is set to 1 „white…,
therwise it is disregarded, and it is set to 0 „black….
ND-operation, as shown in Fig. 6�d�.

21002-4 / Vol. 133, MARCH 2011

ded 18 Feb 2011 to 212.189.136.198. Redistribution subject to ASM
One should note that relying only on the edge detection opera-
tor would have brought a more complex and uncertain threshold-
ing of the scene, as apparent by comparing Fig. 6�d� with Fig.
6�c�.

2.2.2 Fuzzy Lane Recognition. A set of lane candidates is
made available by applying Hough transform to the output of the
FED step. The FLR module allows the pair of lines that best
agrees with the lane model to be selected. The general approach is
based on comparing the geometrical properties of each candidate
with those of the LM model in both the image plane and the real
world and defining deterministic conditions for model matching.
The output of the FLR module is a fuzzy quantity that expresses
our certainty that the line pair matches the lane model. If n lines
are detected in the image, then, there will be c lane marker can-
didates LMj with j=1,2 , . . . ,c, and

c =
n!

2!�n − 2�!
�8�

In the image plane, we can compute the pose Pj
i = �� j

i ,� j
i� for

each one of the lane marker candidates LMj
i relative to frame i and

compare this value with the pose of the lane marker obtained in
the previous frame Pi−1= ��i−1 ,�i−1�. Under the assumption of a
relatively small displacement of the vehicle with respect to the
road marking between two consecutive frames, we can regard Pi−1

as a good reference value. If the line pair pose Pj
i agrees with Pi−1,

then one can expect good correspondence between that pair and
the lane model. Poor correspondence suggests low likelihood of
matching.

Similarly, we can compare the geometrical properties of the
lane marker LMj

i in the real world, i.e., Wj
i and the orientation � j

i,
with the analogous parameters of the model obtained from the
previous frame. A small difference in the values of width and
orientation suggest high likelihood of matching of the candidate
with the model. We again adopt fuzzy logic to express these hy-
potheses. The triangular membership functions of the inference
system for the FLR module are shown in Fig. 7.

The fuzzy data fusion uses four inputs and one output. The
inputs are the geometrical data, i.e., the absolute difference in
distance and orientation estimated in the image plane, denoted
with �� j and �� j, between the candidate pose and the model pose
in the previous frame, and the absolute difference in width and
orientation, denoted with �Wj and �� j, respectively, between the
candidate and the model in the real world. The output is a dimen-
sionless factor ranging from zero to one that expresses the degree

Fig. 6 Results of a sample image binarization using the fuzzy
edge detection module: „a… selected ROI, „b… fuzzy thresholding
using the Intensity Indicator, „c… Canny edge detection, and „d…
Boolean AND of the two previous operations. Note that the
negatives of the binary images are shown for visualization’s
sake.
of confidence we have that the line pair matches the lane model.
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he set of if-then rules used by the fuzzy inference system to fuse
he geometrical information is shown in Table 1. Those rules ex-
ress our physical understanding of the problem, and they were
hosen to give the best performance over other alternatives using
trial and error process. The rule set is not unique; new rules may
e thought of and implemented to improve the output of the sys-
em.

Fig. 7 Membership fun

Table 1 Fuzzy logic rules used by the FLR module

Rule
number

Input Output

�� j �� j �Wj �� j

Match
confidence

1 Small Small Small Small High
2 Small Large Small Large Medium
3 Large Small Large Small Low
4 Large Large Large Large Low
5 Large Large Small Small Low
6 Small Small Large Large Medium
ournal of Dynamic Systems, Measurement, and Control

ded 18 Feb 2011 to 212.189.136.198. Redistribution subject to ASM
The output of the FLR module is shown in Fig. 8 overlaid over
the original scene of the running example of Fig. 6. Five lines are
obtained by applying Hough transform; thus, ten lane marking
candidates exist. Table 2 collects the match confidence estimated

ons of the FLR module

Fig. 8 Fuzzy lane selection applied to a sample image. Five

lines were selected forming ten lane marker candidates.

MARCH 2011, Vol. 133 / 021002-5
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y the FLR system for each candidate. As expected, the lane
arker bounded by lines L1 and L2 �Fig. 8� yields the greatest

onfidence level �86.0%�, and it is, therefore, selected as the best
atch.
It is worth noticing that the efficient filtering provided by the

revious FED module �see Fig. 6�d��, allowed all the detected
ines to be concentrated at the borders of the actual lane marker.
he presence of multiple lines can be explained when considering

he resolution of the Hough space. This makes the task for the
LR system relatively easy. However, this is not always the case.
s an example, Fig. 9 shows a different scene where spurious

oad signs appear, resulting in a fictitious peak in the Hough space
due to line L2 in Fig. 9�b��. Match confidences of the lane marker
andidates for this case are reported in Table 3. All the stripes
omprising the spurious line are labeled with low confidence by
he FLR module and the lane model is correctly determined as the
ne formed by lines L3 and L4, with 82.1% of confidence, attest-
ng to the feasibility of this approach.

Once the lane marker has been detected, the vehicle position
nd orientation relative to the lane can be estimated using inverse
erspective projection �23�, thus providing a valid input to
ehicle-control and driver warning systems.

2.2.3 Dynamic Model Building. The accuracy of a lane detec-
or greatly depends on the accuracy of the model adopted for the
oad marking. The best choice of road model is tightly connected
ith the environmental conditions in which the system is used.
or example, a static model, built upon the initial geometrical and

ntensity properties of the road lane, could soon fail or give poor
esults because of changes in lighting conditions and lane marking
hape or width during vehicle travel. The proposed DMB module
llows the lane model to be built online following a multiframe
pproach by processing a short sequence of images �typically,
rom 10 to 20 frames, with less than 1 s period of time, are
ufficient�. It kicks in at the start of the lane detection operation or

able 2 Degree of confidence for the lane marking candidates
f Fig. 8, as derived by the FLR module

Candidate
number

Lines
involved

Match
confidence �%�

1 L1, L2 86.0
2 L1, L3 77.0
3 L1, L4 70.0
4 L1, L5 3.4
5 L2, L3 6.0
6 L2, L4 6.2
7 L2, L5 79.0
8 L3, L4 5.7
9 L3, L5 40.0
10 L4, L5 40.1

Fig. 9 Lane detection for a sample
white road markings are present: „
indication of the lane marker candidate

21002-6 / Vol. 133, MARCH 2011
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when the system needs to update the model after failure. The only
underlying assumption is that the vehicle is properly positioned on
the road and that the lane marking is within the camera field of
view.

In each frame of the sequence, the DMB module looks for the
best model following a two-step approach. First, a Canny’s edge
detection is performed. Second, a bounded Hough transform is
applied. Thus, a set of marker candidates j can be defined in terms
of their parameters Wj and � j and compared with the nominal
model to find the line pair that best satisfies constraints �5� and �6�
for the given image. Fuzzy logic still represents a feasible and
effective solution to this problem. Two inputs and one output are
used in the fuzzy inference system, with the relative membership
functions shown in Fig. 10.

The inputs �Fig. 10� are the absolute difference �Wj
0 between

Wj and the nominal width Ŵ and the absolute difference �� j
0

between � j and �̂. The output expresses the match confidence of
the lane marker j. The rules for the fuzzy inference engine are
collected in Table 4, expressing the idea that the more the stripe is
similar to the nominal model, the greater is the confidence that it
actually represents the lane marker.

In order to combine robustly the results obtained from the
single scenes of the sequence, a so-defined cumulative Hough
matrix is proposed, whose conceptual scheme is shown in Fig. 11.
For each image i, the computed model is added to the CHM,
expressed in terms of coordinates of its border lines in the Hough
space, namely, points �P1

i , P2
i �. After processing m frames, m lane

marker candidates LMi with i=1,2 , . . . ,m, will be included in the
CHM, distributed in cells, representing a small span of the Hough
parameters. The larger the number of points falling into a given
cell, the higher the likelihood that one of the two boundaries of
the model belongs to this cell. Note that the vehicle’s position and
orientation with respect to the lane marking is assumed not to

age where extraneous transversal
output of the FED module and „b…

Table 3 Degree of confidence for the lane marking candidates
of Fig. 9 as derived by the FLR module

Candidate
number

Lines
involved

Match
confidence

�%�

1 L1, L2 0.9
2 L1, L3 3.2
3 L1, L4 80.1
4 L1, L5 3.3
5 L2, L3 2.7
6 L2, L4 7.8
7 L2, L5 3.8
8 L3, L4 82.1
9 L3, L5 0.0

10 L4, L5 40.0
im
a…
s
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hange significantly during the model building stage. Eventually,
he two cells with the largest number of points are selected �cells
enoted by a dashed rectangle in Fig. 11�, and the last points
dded to these cells �denoted with P1

K and P2
K in Fig. 11�, are

hosen as the best-updated estimate of the model.
Once the lane marker has been identified, its geometrical prop-

rties are known in both the image plane and the real world. In
ddition, the appearance properties of the marker, i.e., the average
ntensity of the pixels bounded by the two lines, can also be de-
ermined. All the estimated properties of the lane marker are
assed on to the FLane tracking system that can start its tracking
ask. Representative results obtained from the DMB module are
hown in Fig. 12 for a sample set of ten frames, acquired in a 0.5

Fig. 10 DMB: input and o

Table 4 Fuzzy logic rules used by the DMB

Rule
number

Input Output

�Wj
0 �� j

0
Match

confidence

1 Small Small High
2 Small Large Medium
3 Large Small Medium
4 Large Large Low
Fig. 11 Conceptual scheme of the CHM

ournal of Dynamic Systems, Measurement, and Control
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s window, with the vehicle moving at about 40 km/h Specifically,
Figs. 12�a� and 12�b� show frames #1 and #5 of the sequence,
with the overlaid selected lane marker and the assigned confi-
dence level. Figure 12�c� illustrates the CHM for the test
sequence.

The two cells with the largest number of points originate two
peaks in the CHM, corresponding to the lane marker borders de-
picted in Fig. 12�d�. Note that, in this example, the lane marker
was properly identified in every frame of the sequence, and the
border lines have their corresponding Hough points concentrated
in only two cells of the CHM. However, it may occur that either
the marker is not detected or misidentifications arise in one or
more frames due to bad illumination conditions, wide occlusions,
presence of multiple white stripes, or even absence of the marker.
In such a case, the use of multiple frames helps to keep a robust
estimation of the model, as demonstrated by the sequence shown
in Fig. 13.

Finally, one should note that the reliability of the DMB output
can be assessed by evaluating the score assigned to the lane
model, and the process can be possibly repeated until a suffi-
ciently high-confidence model is achieved.

3 Experimental Results
In this section, we present a comprehensive set of experiments

to validate our approach. The FLane system was tested in the field
on a commercial automobile, as shown in Fig. 14. A C�� com-
piled implementation of the algorithm processed images in real
time at 20 Hz on a 1.86 GHz Pentium III-M laptop. The execut-
able version of the code required 120 KB of memory for the
program, with an additional 225 KB of memory for execution.
These low requirements suggest that the algorithm is suitable for
on-board implementation with limited computational resources.
Additionally, a cost-effective webcam, mounted sideways, was
used for image acquisition to demonstrate the effectiveness of the
algorithm with poor hardware resource. The webcam was cali-
brated using the MATLAB camera calibration toolbox �24�. Data
were collected from portions of four kinds of roads at different
times of the day. Details are given in Table 5. Sequence A refers to
urban road with solid or dotted lane markings and heavy distur-
bances due to curbs, manhole covers, etc. Typical freeway condi-

ut membership functions
utp
tions with solid or dotted road markings and complex shadowing
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Fig. 12 Result of the DMB module applied to a sample sequence: „a… first frame of the sequence,
„b… fifth frame of the sequence, „c… representation of the CHM, and „d… selected lane marker model.

Images „a… and „b… report indication of the confidence assigned to the selected lane marker.
Fig. 13 Example of robust marker model building: „a…-„l… consecutive frames used for model building; „m… marker model
obtained as output of the DMB module. Although the absence of the main lane marker in „d… or the presence of multiple

lines in „e…, „f… and results in misidentifications, the DMB module retains a correct model.
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ue to overpasses and other cars and changes in road surface
aterial are shown in sequences B, C, and D at different times of

he day: noon, dusk, and night, respectively. The FLane system
as tested over a total of 44,850 frames �approximately 35 km of

otal travel distance�, showing the results summarized in Table 6.
The percentage of false positives, false negatives, and misiden-

ifications is shown for each image set. False positives occur when
lane marker is recognized when actually there is no lane mark-

ng. This is due to spurious objects in the scene, which somehow
atch the lane model. As an example, Fig. 15 shows a scene
here the FLane system erroneously detected a lane marker, mis-

ed by the grids of a manhole cover. In our tests, the percentage of
alse positives was always less than 3%. Conversely, false nega-

ig. 14 The test bed used for experimental validation of the
Lane system

able 5 Set of sequences showing the environmental variabil-
ty caused by road markings and surfaces and lighting

et Road Road marking Day time

Urban and
rural

Solid or dotted lines
NoonOcclusions and disturbances

Low contrast between road texture and line
Highway Solid or dotted lines Noon
Highway Solid or dotted lines Dusk
Highway Solid lines Night

able 6 Performance of the FLane system under various light-
ng and road conditions

et Frames
False positives

�%�
False negatives

�%�
Misid.

�%�

10,450 2.8 5.6 2.5
15,400 0.0 3.7 0.0
11,460 0.0 1.5 0.5
7,540 1.4 0.5 0.6

Fig. 15 Example of false positive du
grey lines „red lines in the online
marker estimated by the FLane sys

and „b… output of the FED module

ournal of Dynamic Systems, Measurement, and Control

ded 18 Feb 2011 to 212.189.136.198. Redistribution subject to ASM
tives arise when the lane marker is present in the image but the
system is not able to detect it at all, and it does not return any
information. The percentage of false negatives was less than 6%
and due mainly to partially-deleted road marking, poor image seg-
mentation, and camera calibration errors, as shown by the ex-
ample of Fig. 16, where the FLane system failed. However, we
should emphasize that this type of error may be greatly mitigated
by adopting a more sophisticated hardware set. Finally, misiden-
tifications refer to cases in which a lane marker is present in the
image but the system fails in recognizing it properly and returns
wrong information. In all tests, misidentifications were less than
3%. As expected, set A presented error rates greater than sets B, C,
and D.

Table 7 shows some typical results for sample images extracted
from each one of the sequences investigated. The initial model of
the lane marker was constructed online with our DMB approach
employing a set of ten frames. The initial models are also shown
in the first column of Table 7 with overlaid the confidence level.
Finally, Table 8 collects the output of the FLane system for par-
ticularly challenging situations. Specifically, the images extracted
from sequence A refer to two scenarios characterized by high level
of noise, low contrast between road texture and lane marker, and
sudden lighting variations. Although the application of the FED
module resulted in the detection of multiple spurious lines �de-
noted by black lines� due to poor image segmentation, the FLR
module correctly identified the lane marker �grey lines or red lines
in the online version of the paper�. The images from set D also
confirm the effectiveness of the proposed approach in very poor
lighting conditions and in presence of multiple reflections and
shadows.

In conclusion, the FLane system proved effective in field test-
ing providing a fast measurement update every few meters of

he presence of a manhole cover: „a…
sion of the paper…: erroneous lane

and black lines: lane candidates;

Fig. 16 Example of false negative due to poor image segmen-
tation: „a… black lines: lane candidates; and „b… output of the
FED module.
e t
ver
tem
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ravel distance �e.g., 1.4 m at a speed of 100 km/h� that enforced
he small variation assumption adopted for the lane model.

Conclusions
In this paper, we presented a method for detecting and tracking

ateral lane markings in real time and in a highly dynamic envi-
onment, referred to as fuzzy logic lane tracking system. The
Lane system uses Hough transform in conjunction with fuzzy
easoning to provide high flexibility and ability to adapt to differ-
nt roads and environmental conditions. Experimental results, ob-
ained with our system integrated with a commercial automobile,
nd using a cost-effective webcam showed the feasibility of our
pproach and its robustness to variations in lighting and road con-
itions, with a worst-case of less than 6% of failed observations in
rban roads. It was shown that the FLane module could be effec-
ively employed in the development of autonomous vehicles and

Table 7 Typical results obtained from the F
tions, as described in Table 5. Please refer to S
processing.

SET DMB

A

B

C

D

river assistance systems.
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Appendix
If we introduce an average relative intensity variation between

the ROI of two consecutive frames i and i−1 as

�IROI
i = � IROI

i − IROI
i−1

IROI
i−1 � � 100 �A1�

where IROI
i is the average intensity value within the ROI of frame

i and IROI
i−1 is the average intensity value within the ROI of frame

i−1.
Then, we can define �Imin

i as

�Imin
i = �Imin

i−1 + ki · �IROI
i �A2�

with ki being a weighting factor, which depends on the value of
�IROI

i . For a finer gradation, we also express this relationship with
fuzzy logic. The input to the fuzzy inference system is the value of

i

e system for different environmental condi-
. 2.2.1 and 2.2.2 for more details on the image

ane Fuzzy Edge Detection
Lan
ecs

FL
�IROI and the output is the gain ki ranging from zero to one.
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