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Abstract
Purpose – The purpose of this paper is to present a mobile robot with an olfactory capability for hazardous site survey. Possible applications include
detection of gas leaks and dangerous substances along predefined paths, inspection of pipes in factories, and mine sweeping.
Design/methodology/approach – The mobile sentry is equipped with a transducer array of tin oxide chemical sensors, compliant with the standard
interface IEEE 1451, which provides odour-sensing capability, and uses differential drive and spring-suspended odometric trackballs to move and
localize in the environment. The monitoring strategy comprises two stages. First, a path learning operation is performed where the vehicle is remotely
controlled through some potential critical locations of the environment, such as valves, pressure vessels, and pipelines. Then, the robot automatically
tracks the prerecorded trajectory, while serving as an electronic watch by providing a real-time olfactory map of the environment.
Laboratory experiments are described to validate the approach and assess the performance of the proposed system.
Findings – The approach was shown to be effective in experimental trials where the robot was able to detect multiple odour sources and differentiate
between sources very close to one another.
Research limitations/implications – One limitation of the methodology is that it has been specifically designed for odour detection along a well-
defined path in a highly structured environment, such as that expected in the industrial field. The problem of detection of leakages outside the search
path is not addressed here.
Practical implications – This mobile robot can be of great value to detect hazardous fluid leakages in chemical warehouses and industrial sites, thus
increasing the safety level for human operators.
Originality/value – The paper describes a mobile robotic system, which employs an odour-sensing capability to perform automated monitoring of
hazardous industrial sites. A dynamic model of the mobile nose is also discussed and it is shown that it well describes the behaviour of the system.
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1. Introduction

One of the greatest challenges among the robotics research

community is the development of intelligent vehicles capable of

autonomous navigation in structured and unstructured

environments. Such vehicles will rely on complex sensing

systems, able to gather the relevant features of the environment,

and intelligent control systems that produce the appropriate

actions in response to the sensed surroundings. Since, when

Persaud and Dodd (1982) described in their seminal paper a

model of an artificial system able to emulate some aspects of the

biological olfactory system and now commonly known as an

“electronic nose,” a great deal of interest arouse in the robotics

community. A significant example of an electronic nose –

ENose, was developed by JPL for detecting chemical leaks in

enclosed spaces, like the International Space Station or Space

Shuttle (Ryan et al., 2004). Recently, in the MIR space station

an array of conductive polymer sensors where used to detect

fluid leak of ethylene glycol in the cooling system (Persaud et al.,

1999). Gas sensors have been widely used in food analysis

(Taurino et al., 2003), such as tests on the freshness of fish

(Olafsson et al., 1992), quality estimation of ground meat

(Winquist et al., 1993), and recognition of illegally produced

spirituous beverages (Kleperis et al., 1999). Although it is rather

common to find robots with sensors that mimic the animal

world, sensors for smell (chemical sensors) are by far the least

used in robotics. The reason relies not only in the reduced

importance of this sense in human navigation, but also a

consequence of the slow development of chemical sensors in
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order to become similar to their biological counterparts

(Russell, 2001).
A mobile robot can take advantage of an electronic nose

when it needs to perform some chemically related tasks, such

as identification of washed areas by cleaning robots, follow an

odour track or find sources of odour, like gas leaks, drugs,

explosives, and landmines. Many research groups have

addressed the implementation of odour sensors in the

robotics field. Russell et al. (1995) at Monash University in

Australia described an interesting approach in navigation of

mobile robots, based on laying down an odour trail and using

an olfactory sensor to allow a vehicle to follow the trail or to

guide other following robots. Marques and de Almeida (2000)

developed insect behaviour-based algorithms in order to

follow the chemical gradient of an odour plume rather than a

trail. The insect world demonstrates that the laying and

detection of chemical trails can be useful as an aid for

navigation and to help organise large groups of workers. With

similar navigation and organisational benefits in mind, robotic

trail following has also been investigated in Stella et al. (1995).

The localization of odour sources was also demonstrated in

special environments: constant airflow and the use of huge

sources with special odours. The constant airflow results in

enormous advantage in locating gas sources, since the gas

source generates a plume, with a well-defined concentration

profile stable in time. In all those cases, an upwind search can

be performed by driving across the plume (Nakamoto et al.,

1999; Ishida et al., 1994). The foremost limitation of odour-

based navigation is the vehicle slow speed (,20 cm/s). In the

last few years, there has been an increasing demand for gas

sensors to inspect chemical warehouses and industrial sites

against leakages of hazardous chemicals.
This paper describes the efforts at the University of Salento

towards the development of a mobile “sentry” with olfactory

capability for intelligent monitoring of the environment.

A differential drive mobile robot is equipped with a gas sensor

device developed at the Institute for Microelectronics and

Microsystems of theUniversity ofLecce in Italy. It consists of an

array of four tin oxide sensors enclosed in a ventilated cell and

features IEEEStd. 1451.2 (1997) interface, which ensures plug

and play (PnP) capability. The olfactory sensor enables the

robot to build real time odour maps, and serves as a mobile

electronic watch for automated monitoring of hazardous

industrial sites. The designed strategy for environment

inspection is performed in two stages. In the first step, the

vehicle learns the inspection path driving by potential leaking

locations of the environment in remote control mode. The

second step is the automated olfactory inspection process

aiming at detecting odour sources, which would indicate gas

leaks along the prerecorded path. During the automated

inspection stage, the robot is controlled by a non-linear

feedback trajectory tracking law. A spline-based path generator

is also presented that allows the mobile robot to return

autonomously and smoothly to the starting spot, at the end of

the path learning operation.
The paper is organized as follows. Section 2 describes the

olfactory unit in detail. The mobile robot used as a test bed

for experimental validation is presented in Section 3. Section

4 discusses the approach proposed for olfactory monitoring of

the environment, whereas Section 5 describes a dynamic

model of the mobile nose, and provides experimental results

and comments. Finally, Section 5 concludes this paper.

2. The olfactory sensor

The olfactory unit, shown in Figure 1(a), detects gas mixtures
using an array of tin oxide gas sensors manufactured by
Microsens (MSGS 4000), and mounted within a nylon
chamber so-called nose cap, which is shown in Figure 1(b).
A pump is used for blowing odour-laden air into and out of

the chamber with an airflow of 6m3/h, and for stirring the
vapors. The nose cap allows the spatial differentiation of
the mobile nose to be increased, and the change rate of air at
the sensor’s location to be improved. Thus, possible effects
due to different driving speeds are reduced. The continuous

air stream also allows for avoiding the degradation of the
metal oxide sensors saturation level observed with very low-air
movement relative to the sensor, and lower the time needed
for the sensors to recover after the odour stimulus is removed
(Lilienthal et al., 2001). Tin oxide sensors are inexpensive,

small in size, have relatively low-power consumption, and are
relatively unaffected by changing environmental conditions
like room temperature or humidity. However, they feature
very low selectivity. Thus, although the sensitivity of the
Microsens sensors used in this work is optimized for solvents,

halocarbons, and a range of combustible gasses, they respond
strongly to alcoholic substances, which were used to provide
the gas source in our experiments. The transducer principle is
based on heating the tin oxide sensor to about 3008C, where
the presence of reducing gasses causes a drop in sensor

resistance. The relationship between sensor resistance and the
concentration of detected gas is nonlinear and can be
approximated by (Watson, 1984):

R ø K ·R0 ·C
a; ð1Þ

where a is the sensitivity, R is the sensor resistance, R0 is the
sensor resistance in clean air, K is the scaling constant, and C
is the concentration. The resistance of tin oxide sensors
increases as the concentration of the target chemical is
reduced. This implies a negative value for the sensitivity

constant a. When an odour is presented to the electronic
nose, most if not all sensors will respond to same extent.
However, some will respond far more strongly than others.
Preprocessing typically involve normalization to account for
variations in odour concentration.
The olfactory unit is compliant with IEEE 1451.2 standard.

Specifically, a Smart Transducer Interface Module (STIM)
has been developed providing PnP capabilities for the
transducer at both hardware and software level. PnP is

twofold operating at both local level, for adding/replacing new
transducer devices, and network level in order to enable
remote control/query from portable devices such as personal
digital assistants, laptops, etc. The former is achieved with the
definition of a transducer electronic data sheet (TEDS) that

supports a wide variety of transducers. The TEDS, which
provides self-identification capabilities, is the core of this
sensorial device, since it contains fields that fully describe the
type, operation, and attributes of one or more transducers. In
general, IEEE 1451 is a family of standards, which introduces

also an informative model of microprocessor named Network
Capable Application Processor – NCAP (IEEE 1451.1),
which is the bridge between the physical world of transducers
and the network (regardless of the transport). This allows for
PnP capability at network level, by managing a multitude of

agents that interact to each other with the same
communication language (Lee, 2000). The implementation
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of the IEEE 1451.2 standard is shown for the hardware and
software part in Figure 2(a) and 2(b), respectively. In the
reminder of this section, a brief description of each part is
provided.
The STMicroelectronics ST72264G and the M24C64

EEPROM are the hardware base for the STIM. The
ST72264G is an 8-bit Micro Controller Unit (MCU) with
8KB of program memory, 256 Bytes of RAM, 22
multifunctional bidirectional I/O lines, an I2C multimaster
interface, a SCI asynchronous serial interface and a 10-bit
ADC with six input channels. Input to the MCU are the four
semiconductor gas sensors and one temperature/humidity
sensor. The M24C64 EEPROM is used to store the IEEE
1451.2 TEDS, while the data between EEPROM and MCU
are transmitted via I2C interface.
The logical software block diagram of the STIM consists of

five modules (Figure 2(b)):
1 STIM control and channel data block. Contains the

definitions of the channels associated with the STIM
and the main control flow.

2 STIM-NCAP interface block. Defines the logical interface
between STIM and NCAP mapped on a RS232 link;
asynchronous messages are defined for replacing trigger,
acknowledgement, hot swap and error reporting
functions, in addition to the data transfer functions.

3 TEDS block. Defines the TEDS that are in use in this
implementation of the 1451.2. It defines where the TEDS
are mapped to, how they are written, how they are
retrieved and what they contain.

4 Basic functions blocks. Implements all the main

functionalities that are defined by the 1451.2 standard.

It deals with data transport, control, interrupt, status and

trigger functions.
5 STIM-transducer interface block. Provides functions that

allow to access to each channel of the STIM.

3. The mobile sentry Jack

All the experimental work described in this paper was

performed using the mobile robot Jack, which is a differential

drive vehicle built at the Applied Mechanics Laboratory of the

University of Salento. The vehicle is shown in Figure 3(a),

with the olfactory unit mounted on its top at a height of about

60 cm from the ground. Jack is equipped with a 1GHz

Pentium IV processor, and linked with the local network

through a wireless connection. It can run in autonomous

mode or be manually controlled using a wireless joypad. Its

sensor suite includes various mechanical and infrared

proximity sensors and a camera for off-board broadcasting.

The vehicle can achieve speeds up to 1m/s. It is special in the

fact that it utilizes a position estimation system based on a

pair of non-loading-bearing odometric two-axes trackballs

rather than conventional encoders, mounted on the axes of

the drive wheels. This solution is generally beneficial to

odometric accuracy, since it results in a reduction of the

typical systematic errors connected with slippage and

deformability of loaded drive wheels (Borenstein and Feng,

1996). Each channel of the trackball has a resolution of

Figure 1 The olfactory sensor box (a), and a detail of the nose cap (b)
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960 lines/rev that implies for the 50.8mm diameter of the
trackball a sensitivity in terms of linear displacement of
0.16mm. The two trackballs are suspended with a telescopic
spring system, which enables the odometer to move up and
down relative to the drive wheels, avoiding that small
undulations in terrain can leave the vehicle supported only
by the trackballs, while ensuring the required spring load with
the pavement. Details of the telescopic suspension system and
location of the trackballs are shown in Figures 3 and 4,
respectively.
Figure 4 shows a schematic diagram of our vehicle Jack.

A coordinate system is attached to the vehicle so that the
x-axis of the vehicle coordinate system is aligned with
the vehicle’s longitudinal direction. The position of the vehicle
traveling on a plane is fully described by the Cartesian
coordinates X, Y and the heading u (Yaw) of the midpoint G
of the central axis, chosen as vehicle reference point. At the
generic instant t ¼ nT, the robot location update can be
estimated as follows:

Xnþ1 ¼ Xn þ ddn · cos un þ
dun

2

� �
; ð2Þ

Ynþ1 ¼ Yn þ ddn · sin un þ
dun

2

� �
; ð3Þ

unþ1 ¼ un þ dun; ð4Þ

where ddn and dun are, respectively, the linear and angular
displacement of the vehicle between two sampling points that
can be estimated from the trackball pair as:

dun ¼
dYn;F 2 dYn;R

b
; ð5Þ

ddn ¼
dXn;F 2 dXn;R

2
; ð6Þ

being b the distance between the trackballs along the vehicle
longitudinal direction, and dXn,i dYn,i the displacement
measured by the trackball i (i ¼ front, rear) along Xv- and
Yv-directions, respectively.

4. Olfactory monitoring

The strategy for the automated inspection of hazardous
industrial environments comprises two stages. In the first
stage, the vehicle records the path to be monitored while in
remote control mode. A spline-based algorithm enables the
vehicle to return to its starting spot at the end of this step.
The second stage consists of the automated monitoring along
the prerecorded path. This approach has been specifically
designed for a structured environment with a high degree of
automation and known critical hot spots for possible fluid or
gas leakages, which is the typical case of industrial sites for
production, storage and manipulation of hazardous products.
In the reminder of this section, both stages of the olfactory
monitoring are described in detail.

4.1 The path learning process

The mobile robot is remotely controlled by the operator
through some critical locations of the environment P ¼
½P1;P2; . . . ;Pn� (Pi [ R2 with respect to a given global frame,
see Figure 5), via wireless communication using a joypad and
an onboard camera, while it records the driven (manually
commanded) path using its pose estimation system, as
described in Section 3. This step is performed under the

Figure 3 The differential drive vehicle Jack (a), with a technical illustration of the trackball suspension system (b)
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assumption that those locations are accessible by the robot

and a clear route of connection can be done. During this

stage, olfactory data are also stored to serve as a reference

value for the successive inspection task. As shown in Figure 5,

the recorded path might not be closed, i.e. the ending pose

could differ from the starting one (Pn – P0). Since in the next

phase the robot should autonomously re-run the learned path

to accomplish its environment monitoring task, poses P0 and

Pn need to be suitably connected. The issue is to find a path

going from Pn to P0 having, in Pn and P0, the same slopes that

the recorded one had. Moreover, in order to minimize the

jerk, the curvature of the connecting path should be null in P0

and Pn. These requirements call for a spline-based path

planning approach.
In particular, if j [ [0, 1] and Pn ¼ (xn, yn) and P0 ¼

ðx0; y0Þ; a continuous curve going from Pn to P0 with assigned

derivatives in Pn and P0 is given by:

G ¼ {ðxðjÞ; yðjÞÞ : j [ ½0; 1�}; ð7Þ

where:

xðjÞ ¼ aj3 þ bj2 þ cjþ d; ð8Þ

yðjÞ ¼ aj3 þ bj2 þ gjþ d; ð9Þ

with the following boundary conditions:
xjj¼0 ¼ x0 ¼ d ¼ xPn

; ð10Þ

yjj¼0 ¼ y0 ¼ d ¼ yPn
; ð11Þ

xjj¼1 ¼ x1 ¼ aþ bþ cþ d ¼ 0; ð12Þ

yjj¼1 ¼ y1 ¼ aþ bþ gþ d ¼ 0; ð13Þ

dy

dj

����
j¼0

¼ y0jj¼0 ¼ y00; ð14Þ

dy

dj

����
j¼1

¼ y0jj¼1 ¼ y01; ð15Þ

dx

dj

����
j¼0

¼ x0jj¼0 ¼ x00; ð16Þ

dx

dj

����
j¼1

¼ x0jj¼1 ¼ x01; ð17Þ

The four derivatives x00; x
0
1; y

0
0; y

0
1 are assumed to be known.

The slope of G at the two boundary points is:

y0

x0

����
j¼0

¼ y00
x00

¼ dy

dx

����
j¼0

; ð18Þ

y0

x0

����
j¼1

¼ y01
x01

¼ dy

dx

����
j¼1

; ð19Þ

while the curvature k of the curve is given by:

k ¼ x0y00 2 y0x00

ðx02þ y02Þ3=2
; ð20Þ

In order for G to have null curvature in j ¼ 0, j ¼ 1, and

contemporary satisfy the boundary conditions (10)-(17), it is

sufficient to add to the relations (8) and (9) the polynomials

xk(j) and yk(j), respectively, which satisfy the boundary

conditions defined below:

xkð0Þ ¼ xkð1Þ ¼ 0; ð21Þ

x0kð0Þ ¼ x0kð1Þ ¼ 0; ð22Þ

x00kð0Þ ¼ 2x00ð0Þ ¼ 22b; ð23Þ

x00kð1Þ ¼ 2x00ð1Þ ¼ 26a2 2b; ð24Þ

and equivalently on yk(j). By direct calculation, it can be

found that such polynomials may be defined as:

xkðjÞ ¼ ðjðj2 1ÞÞ2ðmxjþ qxÞ; ð25Þ

ykðjÞ ¼ ðjðj2 1ÞÞ2ðmyjþ qyÞ; ð26Þ

where:

mx ¼ 23a; qx ¼ 2b; ð27Þ

my ¼ 23a; qy ¼ 2b; ð28Þ

Thus, the final expressions for x(j) and y(j) are:

xðjÞ ¼ aj3 þ bj2 þ cjþ d þ ðjðj2 1ÞÞ2ð23aj2 bÞ; ð29Þ

yðjÞ ¼ aj3 þ bj2 þ gjþ dþ ðjðj2 1ÞÞ2ð23aj2 bÞ; ð30Þ

being:

a ¼ 22ðx1 2 x0Þ þ x00 þ x01;

b ¼ 3ðx1 2 x0Þ2 2x00 2 x01;

c ¼ x00;

d ¼ x0;

a ¼ 22ðy1 2 y0Þ þ y00 þ y01;

b ¼ 3ðy1 2 y0Þ2 2y00 2 y01;

g ¼ y00;

d ¼ y0;

Finally, it is worth mentioning that the derivatives x00; x
0
1; y

0
0; y

0
1

are actually not specified themselves, but rather only their

ratios are:

y00
x00

¼ dy

dx

����
Pn

¼ tan un ) y00 ¼ ðtan unÞx00 ;x00; x
0
1; ð31Þ

y01
x01

¼ dy

dx

����
P0

¼ 0 ) y01 ¼ 0 ;x00; x
0
1: ð32Þ

Figure 5 The path learning process
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This means that the equations (29) and (30) define a family of

12 curves for all the possible values of ðx00; x01Þ. The choice of

these two parameters can be made by optimizing on some

additional performance index. Specifically, it may be useful to

find an optimal tradeoff between maximal curvature of the

path and its length.
To illustrate why this could be the case, consider Figure 6

where two paths are shown corresponding to different choices

of ðx00; x01Þ. Both paths satisfy the boundary conditions

P0 ¼ (10m, 0m), P1 ¼ (1 m, 0m), ðdy=dxÞ0 ¼ 1,

ðdy=dxÞ1 ¼ 21. The solid line path corresponds to

ðx01; x00Þ ¼ ð1; 1Þ, and shows a maximum curvature of about

32.9 rad/m, while the dashed line path corresponds to

ðx01; x00Þ ¼ ð3; 3Þ, and has a maximum curvature of 6.8 rad/m

at the expense of a larger length. Even if the mobile robot

used in this research is a differential drive one (and can thus

drive infinite curvature paths), it may be indeed useful to

design paths having bounded curvature. In particular, the

parameters ðx01; x00Þ may be selected by (numerically)

optimizing a suitable performance index J taking into

account the maximum path curvature and its length:

ðx01; x00Þ ¼ arg
x01;x

0
0

min J : J

¼ l

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx02ðjÞ þ y02ðjÞÞ

p
djþ

j
max jkðjÞj; ð33Þ

where x0ðjÞ; y0ðjÞ are the derivatives with respect to j of the

curve components given in equations (29) and (30), and k is

the curvature of the same curve. The parameter l represents

the relative weight of length over maximum curvature within

the performance index J: if l ! 0, the length of the resulting

path may tend to infinity, while if l ! 1, the resulting path

tends to a straight path, eventually having pointwise infinitely

large curvature (turning on the spot) on the boundary points

in order to meet the orientation boundary conditions.

An example of the obtained results is shown in Figure 7

where three paths relative to the same boundary conditions

ðx1; y1; ðdy=dxÞ1; k1Þ ¼ ð0; 0; 0; 0Þ, ðx0; y0; ðdy=dxÞ0; k0Þ ¼
ð5; 5; 0; 0Þ, but different values of l (l ¼ 10, 1, 0.1) are

plotted. The bottom plot in Figure 7 clearly shows that the

smaller values of maximal curvature are obtained at the

expense of longer paths. The maximization of J has been
performed numerically with a Nelder-Mead type simplex

search method provided in the Matlabw software.
Finally, note that the last driven point Pn is always chosen at

a small distance from the starting point P0 (typically less than
1m) with no obstacle in the way. If a sudden obstruction

stands in the way, the vehicle stops using its proximity sensors
until the way is clear again.

4.2 The automated olfactory inspection

Once that the inspection path GR has been defined by joining
the learned and returning portions, the vehicle is ready to

perform its task of automated olfactory monitoring. During
this step, the operator serves as a remote supervisor analyzing

sensory data and images via wireless communication with the
robot. In order to gain robustness to external disturbances,

the path tracking is not done in open loop by simply “playing
back” the linear and angular velocities associated with the

reference path GR, but rather by implementing a nonlinear
feedback control. Specifically, the trajectory tracking control

law of Canudas de Wit et al. (1993) for the unicycle model is
employed. The required pose estimate to close the loop is

computed based on the trackball odometry, while feedforward
reference velocity signals are taken from the log file of the

reference inspection trajectory GR. Figure 8 shows the path

followed by the vehicle as estimated by its odometric system
during an experiment using the trajectory tracking control.

The cusps that are visible at approximately (x, y) ¼ (5 cm,
0 cm) and (x, y) ¼ (28 cm, 0 cm), are due to the reaction of

the closed loop law to an external disturbance (strong manual
push!).

5. Experimental results

In this section, experimental results are presented aimed at
validating our approach for odour source detection. In order

to simulate odour leakages in a laboratory environment, we
used 50 cm high turrets with an ethanol beaker and a 10 cm

diameter plastic bowl on the top (Figure 3(a)). The ethanol

Figure 6 Two spline-paths obtained from different values of ðx 0
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0Þ

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 2 4 6

X (m)

Y
 (

m
)

8 10 12

Figure 7 Path-planning examples: the star, diamond, and square points
correspond to l ¼ 10, 1, 0.1, respectively, i.e. solid, dotted, and dashed
paths in the upper plot

5

4

3

2

1

0

7

6

5

4

3

2
7 8 9 10 11 12 13 14 15 16

– 5 – 4 – 3 – 2 – 1 0

X (m)

y 
(m

)

Length (m)

M
ax

 C
ur

va
tu

re
 (

ra
d)

/(
m

)

1 2 3 4 5

Olfactory monitoring of hazardous industrial sites

Cosimo Distante, Giovanni Indiveri and Giulio Reina

Industrial Robot: An International Journal

Volume 36 · Number 1 · 2009 · 51–59

56



dripped into the bowl through a hole in the beaker at a rate of
approximately 50ml/h. Ethanol was used because it is not
toxic, easy available, and easily detectable by the oxide
sensors. First, the dynamic response of the mobile nose is
studied, then a set of experiments was performed assessing
the effectiveness and performance of the whole system.

5.1 Dynamic response

The mobile nose was subjected to a step stimulus by driving
the robot at its nominal speed of 5 cm/sec along a 3m straight
path with an odour source placed exactly halfway. As
suggested in Lilienthal and Duckett (2003), the sensor can
be modeled as a first-order system and its dynamic response
r(t) to a step input as an exponential rise and decay:

rðtÞ ¼

r1ðtÞ t , ts

r2ðtÞ ts , t , ts þ Dt

r3ðtÞ ts þ Dt , t

8>><
>>:

; ð34Þ

r1ðtÞ ¼ R0; ð35Þ

r2ðtÞ ¼ R0 þ ðRmax 2 R0Þ 12 exp
2ðt 2 tsÞ

tr

� �� �
; ð36Þ

r3ðtÞ ¼ R0
0 þ R*max 2 R0

0

� �
exp

2ðt 2 ts 2 DtÞ
td

� �� �
; ð37Þ

R*max ¼ R0 þ ðRmax 2 R0Þ 12 exp
2Dt

tr

� �� �
; ð38Þ

where R0 and R0
0 are the response level before and after the

stimulus, Rmax the saturation level, tr and td the rise and
decay time, respectively, and Dt is the rising interval. This set
of parameters can be determined by fitting the model to

experimental data using, for example, the Marquardt-
Levenberg algorithm (Press et al., 1997). A total of 1,200
data points, obtained from ten repeated trials, was used giving
the results collected in Table I, expressed in terms of average
value and standard deviation. Figure 9 shows the result of a
typical run, instead. The black points refer to the gas sensor
readings, whereas the solid black line is the fitted model. The
sensor provides a slow response of about 1.5 s and an even
longer recovery time of about 4.20. The duration of the

stimulus depends on the vehicle’s speed; however, its value
does not affect significantly tr andtd.

5.2 Leakage detection

In order to test the effectiveness of our system in localizing
odour sources along the inspection path, a set of experiments
was performed in a 5 £ 10m weakly ventilated laboratory
environment. Several odour sources were randomly spread
along the path simulating fictitious leakages.

Figure 8 Path followed by the vehicle using tracking control in a typical experiment
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Table I Model parameters obtained by fitting the sensor model with
experimental data

Parameter (s) Value

tr 1.50 ^ 0.36

td 4.20 ^ 0.81

Dt 5.5 ^ 1.10

Figure 9 Dynamic model of the olfactory sensor fitted to experimental
data
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In a typical test, first, the inspection path was set by remotely

driving the robot trough some points of interests. In a real

industrial scenario, these points are potential leakage sites,

such as valves, pressure vessels, tanks, pipes, etc. Next, the

robot performed its automatic olfactory monitoring task while

the number and position of the odour sources was changed

along the inspection path. Figure 10 shows the results

obtained from the mobile nose, expressed in terms of what we

call the odour map of the path, for a test with five ethanol-

leaking turrets. In the x-y plane, it is shown the path followed

by the vehicle as estimated by the odometric system, whereas

along the z-axis it is displayed the percentage relative

resistance variation of the gas sensor in absolute value. The

“ground truth” positions of the odour sources are indicated

with black cross marks. The minimum relative distance

between the turrets was 100 cm between the first and second

source denoted with S1 and S2, respectively, in Figure 10. The

mobile robot detected correctly all the odour sources. Table II

lists for each of the source position Si ¼ [Sx,i, Sy,i] the

localization error Ei defined as:

Ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSx;i 2Mx;iÞ2 þ ðSy;i 2My;iÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
x;i 2M2

y;i

q ; ð39Þ

where Mi ¼ [Mx,i, My,i] is the location of the source i

estimated by the olfactory system corresponding to the

resistance variation peak.
The odour sources were located with an average error

within 4.5 percent and a worst-case measurement of 5.7

percent. Note that Ei accounts also for errors due to the

inaccuracy of the control and position estimation system.
The travel speed of the vehicle during this test was 5 cm/s.

Other velocities of 15 and 25 cm/s were also analyzed but no

significant difference in performance was observed.
A second experiment was performed using only two leaking

turrets placed at a relative distance of about 60 cm in order to

test the ability of the system to differentiate between two

odour sources very close to each other. The odour map for

this test is shown in Figure 11; the olfactory sensor

successfully detected two distinct odour sources with an

average error of 3.8 percent.

6. Conclusions

A mobile robotics application was described aiming at the

development of an electronic sentry for automated olfactory

inspection of hazardous industrial environments. A smart

olfactory system sensor was presented and integrated with a

differential drive vehicle providing the ability to build real-

time odour maps along a prerecorded path. The envisaged

strategy for automated inspection was described based on

standard nonlinear feedback control approach for trajectory

tracking, and a novel path planning solution for the optimal

tradeoff between polynomial spline length and maximal

(absolute) curvature along the path. The olfactory system

showed to be effective in preliminary experimental trials to

locate multiple odour sources and it could be employed in

intelligent monitoring of chemical warehouses and industrial

sites against hazardous gas leakages, thus resulting in an

increase in the safety level for human operators. Future work

will focus on multirobot olfaction applications, which may

benefit from the PnP communication interface, and on

integrating an obstacle avoidance strategy within the guidance

control.
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