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Abstract
This paper introduces a novel method for slip angle estimation based on visually observing the traces pro-
duced by the wheels of a robot on soft, deformable terrain. The proposed algorithm uses a robust Hough
transform enhanced by fuzzy reasoning to estimate the angle of inclination of the wheel trace with respect
to the vehicle reference frame. Any deviation of the wheel track from the planned path of the robot suggests
occurrence of sideslip that can be detected and, more interestingly, measured. In turn, the knowledge of the
slip angle allows encoder readings affected by wheel slip to be adjusted and the accuracy of the position esti-
mation system to be improved, based on an integrated longitudinal and lateral wheel–terrain slip model. The
description of the visual algorithm and the odometry correction method is presented, and a comprehensive
set of experimental results is included to validate this approach.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2010
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1. Introduction

Wheel slippage is a critical issue for mobile robots driving across loose soil, such
as dry sand and the like. It greatly affects the traction performance and energy
consumption, and leads to gradual deviation of the vehicle from the intended path,
possibly resulting in large drift and poor results of localization and control systems
[1, 2]. For example, the use of the conventional dead-reckoning technique is largely
compromised, since it is based on the assumption that wheel revolutions can be
translated into correspondent linear displacements. Thus, if one wheel slips, then
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the associated encoder will register revolutions even though these revolutions do
not correspond to a linear displacement of the wheel. Conversely, if one wheel
skids, fewer encoder pulses will be counted.

Most of the research in the field of mobile robotics has been focusing on the
study of slip along the longitudinal direction of motion. Longitudinal slip can be
estimated through the use of encoders by comparing the speed of driven wheels to
that of undriven wheels on asphalt [3]; however, this is not suitable for deformable
surfaces and does not apply for all-wheel drive vehicles or those without redun-
dant encoders. Reina et al. [4] proposed measures for longitudinal slip detection,
based on comparing different onboard sensor modalities within a fuzzy logic infer-
ence engine. Ojeda et al. [5] presented a motor current-based slip estimator, while
in Ref. [6] a Kalman filter-based approach combining encoders, inertial measure-
ment units (IMUs) and GPS was discussed for detecting immobilization conditions
of a mobile robot. However, in the presence of side forces, the robot moves at an
angle (i.e., the slip angle) with respect to its longitudinal axis, resulting in lateral
slip as well [7]. A large body of research work exists in the automotive community
related to traction control, anti-lock braking systems and electronic stability pro-
grams. However, these works generally apply to asphalt roads and at significantly
higher speeds than those typical for autonomous robots [8, 9]. In this area, Kalman
filters have been widely applied to inertial and absolute measurements, such as GPS,
to enhance dead reckoning and estimate lateral slip [10, 11]. However, GPS is not
yet a feasible option for planetary applications.

This paper investigates the feasibility of a novel approach previously proposed by
the authors [12] for slip angle estimation of mobile robots traveling on loose terrain,
such as that planetary rovers are expected to encounter. This method is based on us-
ing a rearward-facing video camera to measure the pose of the trace that is produced
by the wheels, and detect whether the robot follows the desired path or deviates
from it because of slippage. Figure 1 shows a direct example that will help to clar-
ify this method. For the extensive testing of the system during its development, we
employed the rover El-Dorado, built at the Space Robotics Laboratory of Tohoku
University. El-Dorado is an independently controlled four-wheel-drive/four-wheel-
steer mobile robot, also featuring a rocker-type suspension system. Its operational
speed ranges from 2 to 30 cm/s. In Fig. 1, the rear webcam is visible, mounted to a
frame attached to vehicle’s body. The robot is also equipped with wheel and steer
encoders, and a fluxgate compass to measure the absolute vehicle heading. Fig-
ure 1a shows El-Dorado as driving up a sandy slope following a planned straight
path without any significant sideslip. This is shown by two distinct traces parallel to
the direction of motion and produced by the wheel pair of either side of the robot.
However, if a transverse inclination of the terrain is also present, the consequent
external side force acting on rover’s body will result in a substantial lateral drift, as
shown in Fig. 1b. The traces, left by the wheels of the same side of the robot, are no
longer superimposed and, more importantly, their angle of inclination, with respect
to a reference frame attached to the vehicle, differs from the case of absence of slip.
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Figure 1. Sideslip estimation for a mobile robot by visual observation of the wheel traces with a rear
webcam. (a) Wheel traces parallel to the direction of motion, no lateral slip. (b) Wheel traces inclined
with respect to the intended direction of motion, significant lateral slip. Note the slight roll angle of
the robot due to the transverse inclination of the terrain for case (b).

The proposed approach aims at estimating the slip angle of the robot by measuring
the pose of one of the wheel traces, i.e., the rear left wheel, in conjunction with
the knowledge of the rate of turn provided by an onboard sensor. In our terrestrial
implementation and proof of concept, we employed a compass. However, for plane-
tary applications a more appropriate sensor will be required, such as an IMU. Since
our approach is based on Hough transform supported by Fuzzy logic to provide
robust and accurate tracking of the wheel Trace, we call it ‘FTrace’.

In order to allow useful dead-reckoning even on high-slippage terrain, we present
a method for slippage compensated odometry, called ‘sComp’. The system is based
on an integrated longitudinal and lateral friction model, derived from a semiempiri-
cal approach. First, the model’s applicability is experimentally demonstrated using
a single-wheel test bed, which was constructed at the Space Robotics Laboratory
to study the mechanics of rigid wheels interacting with rigid and deformable ter-
rain, and to aid development of next-generation estimation, motion planning and
control algorithms for planetary exploration rovers. Second, the model serves as a
basis for developing an analytical relation of the longitudinal slip as a function of
the slip angle. One limitation of this approach is that it requires prior knowledge of
wheel–terrain parameters. Online methods of identification while the rover is trav-
eling may be thought of and implemented. However, this problem is not addressed
in this work.

In the robotics community, extensive research has been devoted to the study of
visual motion estimation. It is possible to refer generally to two broad categories:
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landmark-based and optic flow-based methods. The former methods recognize ei-
ther natural or artificial landmarks in the environment and, then, infer the position
of the robot, usually, by triangulation [13]. The latter approaches estimate the dif-
ferential of successive images extracting optical flow vectors, which allow changes
in the robot pose to be evaluated. Notable examples of this category include vi-
sual odometry methods, which were developed and demonstrated for rough-terrain
robots [14, 15] and planetary rovers [1]. The purpose of visual odometry is that
of incrementally estimating the motion of a mobile robot, by detecting and track-
ing interesting point-features of the environment over subsequent images, generally
within a statistical framework for estimation. To this aim different interest oper-
ators were adopted such as Harris, Förstner, SIFT and Shi–Thomasi detector. In
some cases, the search for good features to track may be simplified using motion
information from other sensors [16] or selecting features on specific parts of the
scene. Interestingly, point-features extracted from wheel tracks were used by the
Mars exploration rover Opportunity for successful visual odometry on piles of sand
at Meridiani Planum (see Section 5.1 in Ref. [1]). In this regard, the FTrace sys-
tem represents a different approach. The similarities and differences with respect to
existing literature can be summarized in the following points:

• It does not use optical flow or estimate incremental motion.

• It estimates the actual travel direction of the robot, i.e., the slip angle.

• It performs landmark tracking; however, the FTrace system does not use natural
or artificial landmarks in a conventional sense, but it looks at the traces of the
vehicle, which can be considered as special landmarks, generated by the vehicle
itself.

• Trace tracking is performed using a Hough transform detector within a fuzzy
inference model.

The onboard ability of estimating the lateral slip would be useful for many reasons,
e.g., to adopt proper actions to revise the robot motion plan and avoid hazardous
highly deformable terrains, or to modulate wheel torque to improve traction and
limit slippage. In this paper, the slip angle measurement is used to improve pose
estimation accuracy, in conjunction with traditional wheel encoders.

The paper is organized as follows. The salient theoretical aspects of the FTrace
module are recalled in Section 2. Section 3 presents the combined-slip model along
with its experimental validation and description of the sComp odometry. In Sec-
tion 4, the FTrace system is proved to be effective and robust in field tests performed
with the rover El-Dorado, and the sComp module is applied to correct encoder read-
ings from slipping wheels. Finally, Section 5 concludes this paper.
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2. FTrace System

The presence of shadows, occlusions and terrain unevenness can turn trace track-
ing into a very complex problem. A robust and efficient trace detection system
must be able to filter out all disturbances and extract the marking of interest from
a non-uniform background. In Fig. 2, a sample image set demonstrates the variety
of terrain and environmental conditions that can be encountered. Figure 2a shows a
scene where trace detection can be considered relatively easy thanks to the clearly
defined imprint and uniform terrain texture. In Fig. 2b, extraction of the wheel trace
is more difficult due to non-uniform terrain texture, whereas in Fig. 2c a more
complex wheel trace is shown due to the presence of heavy shadowing. Finally,
Fig. 2d refers to a condition where two imprints are present in the same scene. In
this section, the theoretical basis of the method is briefly described, also providing
experimental evidence of its effectiveness. For more details, we refer the reader to
Ref. [12], rather than repeating this material here. One of the main advantages of
using fuzzy inference systems is their flexibility. Although in our implementation,
the FTrace system was optimized for the specific trace produced by El-Dorado’s
wheel, it may be easily adapted to other wheel traces with different geometrical
characteristics.

Figure 2. Sample images of terrain and wheel trace conditions: (a) uniform sandy terrain,
(b) non-uniform terrain texture, (c) non-uniform terrain texture with noise due to shadowing and
(d) different imprints present in the scene.
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2.1. Theoretical Model

Let us refer to a simple schematic of the vehicle, known as the bicycle model [17],
as shown in Fig. 3. The bicycle model neglects weight transfers, and assumes equal
tires and slip angles on the wheels of the same axle. Under the assumption that
the portion of the trace in the camera image, and the amount of sideslip between
two consecutive images, is relatively small, it is possible to refer to a straight-line
model of the wheel track, corresponding to its centerline. Then, the trace pose can
be defined by the distance dt with respect to the center of mass of the vehicle G,
and the angle θt between the velocity vector of the rear wheel Vr and the wheel
longitudinal axis. This angle is also usually referred to as the slip angle of the rear
wheel αr. With reference to Fig. 3, we can formally define the slip angle β of the
whole vehicle as the angle between the velocity vector V of its center of mass G

and the longitudinal axis Xv. Under the assumption of small angles, the following
linearized relations hold between the slip angles and the velocity components:

β = Vy

Vx

(1)

αr − δr = Vy − r · b
Vx

= β − b

Rt
, (2)

where Vx , Vy are the longitudinal and lateral component of the velocity vector V in
the vehicle reference frame, δr is the rear steer angle, r is the rate of turn expressed
in rad/s, Rt, defined as Rt = Vx/r , represents the distance of the instantaneous
center of rotation from the longitudinal axis of the vehicle, and b is the distance
between the rear axis and the center of mass G.

From (2), it is possible to estimate the slip angle β , given αr from the FTrace
system, δr and Vx from the steer and wheel encoders, and r by differentiation from

Figure 3. Model of the trace of the rear wheel with reference to a bicycle schematization of the robot.
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the onboard compass. Note, however, that the contribution of the term b/Rt is typ-
ically very small and practically β can be confused with αr, when also δr is null.
Although (1) and (2) apply for a general maneuver with a given steer angle, in this
paper we demonstrate the proposed system for the case of a straight path.

2.2. Trace Tracking

The FTrace module performs two main tasks:

• Extraction of trace candidates from the camera-acquired image and estimation
of their pose with respect to the sensor, i.e., the vehicle, reference frame.

• Selection of the candidate that best fits to the trace model.

In order to determine which line best fits to the trace model, the system employs
a robust Hough transform enhanced by fuzzy reasoning. The general approach is
based on comparing the geometrical properties of each candidate with those of the
trace model (as defined in Section 2.1) in both the image plane of the camera and the
real-world, and defining deterministic conditions for model matching. The output
of the FTrace is a fuzzy quantity that expresses the certainty that the line agrees
exactly with the trace model. As a representative result, Fig. 4 shows a sample

Figure 4. Application of the FTrace system to a sample image: (a) original scene, (b) and (c) appli-
cation of edge detection and Hough transform to extract trace candidates, (d) output of the FTrace
system. Note that no sideslip was detected in this image, i.e., θt = 0.
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image referring to a field trial of El-Dorado on sandy terrain. The FTrace system
was able to extract 10 candidates from the original scene (Fig. 4a), as shown in
Fig. 4b and 4c. The trace selection stage provided the confidence matches collected
in Table 1. The lane marker, denoted L7 in Fig. 4b and shown by a dotted line in
Fig. 4c, yielded the greatest confidence level (92.3%) and was, therefore, selected
as the best match. In Fig. 4d, the output of the FTrace system is overlaid over the
original image along with the estimated values of dt and θt.

3. Integrated Longitudinal and Lateral Slip

A proper wheel friction model is essential to develop an accurate position estima-
tion system, since a ground vehicle’s motion is primarily determined by the friction
forces transferred to terrain, via wheels. In general, a wheel is operated under the
condition of both longitudinal and lateral slip. With reference to the single wheel of
Fig. 5, a longitudinal slip ratio sx and a slip angle βw can be generally defined as:

sx = 1 − V w
x

rw · ωw (3)

βw = arctan

(
V w

y

V w
x

)
, (4)

Table 1.
Degree of confidence in model matching of the trace candidates, extracted by the FTrace system from
scene Fig. 4a

Candidate line

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Confidence 2.1 3.1 3.0 2.4 2.6 20.1 92.3 30.3 26.7 24.2
match (%)

Figure 5. Longitudinal and lateral slip for a single wheel.
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where V w
x and V w

y are the longitudinal and lateral components of the velocity vector
V w, rw is the radius, and ωw the angular velocity of the wheel. From a theoretical
point of view, different wheel–terrain friction models can be used: analytical and
empirical. Analytical models are based on terramechanics, which is that branch
of mechanics that deals with the mechanisms underlying the interaction between
a wheel (generally considered as rigid) and deformable, loose soil. Well-accepted
physical models have been proposed in literature to relate the longitudinal and lat-
eral friction force with the normal and tangential stress region at the wheel–terrain
interface, taking into account some intrinsic terrain parameters such as cohesion
and friction angle [7, 18, 19]. However, those models are highly nonlinear, over-
parameterized and difficult to implement online [20]. The (semi)empirical models
are based on curve-fitting techniques and easy to compute, overcoming the draw-
backs of the analytical counterparts, while preserving good accuracy. In this paper,
an empirically derived model for wheel–soil friction modeling is proposed, provid-
ing analytical relations for the longitudinal and lateral forces as a function of the
slip ratio and the slip angle. It, thus, accounts for the coupling between the side and
longitudinal force, known as the friction ellipse, as discussed later.

First, the model is presented, then its validity is demonstrated using a laboratory
single-wheel test bed. Finally, a relation between longitudinal and lateral slip is
derived for odometry correction.

3.1. Wheel–Soil Model

The model discussed in this section is based on the observation that the pure slip
curves remain approximately similar in shape when the wheel runs at conditions
that are different from the reference condition. The reference condition is defined
here as the state where the wheel runs at either free rolling (sx = 0) or at side slip
equal to zero (βw = 0). The functions representing the reference curves, which are
found at pure slip conditions, are denoted with subscript ‘0’, and were found to be
well experimentally defined as

Fx,0(sx) = W · (μ · (1 − e− Cx
μ·W ·sx ) − Ax · sx

)
(5)

Fy,0(tanβ) = W · (μ · (1 − e− Cy
μ·W ·tanβw) − Ay · tanβw)

, (6)

where Fx,0 and Fy,0 are the reference longitudinal and lateral force exchanged be-
tween the wheel and the soil (e.g., Fy,0 represents the side force versus slip angle
relationship with longitudinal slip equal to zero), W is the vertical load acting on
the wheel, and μ is the maximum coefficient of soil adhesion, Cx and Cy can be
viewed as the longitudinal and lateral stiffness, respectively. The latter parameters
are responsible for the slope of the traction curves in the low slip region, whereas
Ax and Ay represent the slope in the high slip range, assuming positive or negative
values depending on terrain. As we are dealing with, in general, a non-isotropic
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wheel model, pure longitudinal and lateral slip characteristics are modeled as not
identical. To address the problem of combined slip, the total slip can be introduced:

σ =
√

s2
x + (tanβw)2, (7)

and the longitudinal and lateral components of the total friction force can be de-
fined:

Fx = σx

σ
· Fx,0(σ ) (8)

Fy = σy

σ
· Fy,0(σ ). (9)

According to this model, Fx increases with the slip ratio until it reaches a saturation
value that can be approximated by:

Fx,max(β
w) = lim

sx→1
Fx = μ · W√

1 + (tanβw)2
, (10)

when considering that Ax is generally very small. The proposed model offers some
advantages over other alternative experimental models: it retains some structures
of the physics-based approaches, allows for independent values of wheel–soil stiff-
ness in the lateral and longitudinal directions, the lateral and longitudinal forces are
directly related to the soil adhesion in more transparent equations, and it is defined
by few parameters, and thus easy to analyze.

3.2. Experimental Validation

A set of experiments was performed using the single-wheel test bed shown in
Fig. 6. It is primarily composed of a wheel assembly, a carriage assembly, a con-
trol/acquisition system and a soil bin. The wheel assembly consists of a driven
wheel mounted on an undriven vertical axis. Horizontal movement and steer angle
of the wheel are actively controlled to allow different values of longitudinal slip ra-
tio and slip angle to be investigated. A six-axis load sensor provides measurement
of longitudinal and lateral forces developed in the wheel–soil interaction. The test

Figure 6. Wheel–terrain interaction test bed.
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Table 2.
Soil parameters

Soil Cohesion Internal friction Density
c (kPa) angle ϕ (◦) (kg/m3)

Lunar soil 0.8 30 1.6 × 103

simulant [22]

Loose sandy 0.2–1.0 26–32 1.3–1.7 × 103

terrain [18]

bed is designed for 5 to 25-cm diameter wheels, vertical loads in the 50–200 N
range, wheel torques ranging from 0.1 to 5.0 Nm, linear velocities up to 10 cm/s,
and drawbar pull forces up to 100 N. These ranges were chosen to be similar to
those of current and future planned rover systems. More details of the single com-
ponents of the system can be found in Ref. [21]. The so-called FJS-1 simulant was
used [22], which reproduces real lunar soil. It was chosen as the test soil in our
experiments since it is a well experimentally defined soil and available in the labo-
ratory, and its properties fall in the average range of loose, sandy terrains, as shown
in Table 2. Therefore, the behavior of a rigid wheel can be reasonably expected to
be similar on both types of soil. A 92-mm radius, 110-mm wide rigid wheel with
10-mm high grousers was analyzed under a vertical load of W = 6.6 kg, slip ra-
tio range of 0–0.8 and slip angle of 5–25◦. Multiple experiments were conducted
to guarantee repeatability, and experimental data are reported in terms of average
measurement and standard deviation. In Fig. 7, the measured longitudinal force
Fx is plotted as a function of slip ratio for increasing values of slip angle and the
experimental data are compared with the predicted values obtained by the model.
Similarly, Fig. 8 shows a comparison between the estimated lateral force Fy and
the empirical model for increasing values of slip angle. In both Figs 7 and 8, the
agreement between the experimental data and the model is good, attesting to the
feasibility of this approach. The predicted Fx always lies within the level of con-
fidence of the measurements. The lateral force Fy is also well modeled for small
and medium slip angles (βw = 5–10◦), whereas it appears slightly overestimated
for high slip angles.

3.2.1. Model Tuning
In order to compare the experimental results with the model, the wheel–soil pa-
rameters associated with the model need to be tuned. Based on the physical un-
derstanding of the model, the following procedure was developed as part of this
research, which led to the results summarized in Table 3:

(i) From (10), it is possible to adjust μ to obtain the correct Fx,max for small slip
angles (i.e., Fx,max � μ · W ).
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Figure 7. Longitudinal force versus slip ratio. Black dots with error bar: experimentally determined
data with indication of statistical spread. Black solid line: combined-slip model.

(ii) From (9), the value of Cy can be determined by matching Fy for small values
of slip ratio.

(iii) From (8), it is possible to tune Cx so that Fx agrees with the experimental data
for small slip ratio.

(iv) Finally Ax and Ay can be determined from (8) and (9), respectively, by fitting
Fx and Fy at high slip ratio.

Note that the value of Cy is larger than Cx . This can be explained when considering
the so-called ‘bulldozing’ resistance, acting on the side wall of the wheel [7].

3.3. Relating Longitudinal and Lateral Slip

In general, the presence of a lateral force, and thus of a slip angle, decreases the
availability of adhesion along the longitudinal direction. For a given longitudinal
force, the wheels of the vehicle will build up a higher slip ratio if a lateral dis-
turbance force is also present. This is shown in Fig. 9, where Fx predicted by the
model is plotted as a function of sx for different values of slip angle. Similarly, the
tractive effort will reduce the cornering force that can be generated for a given slip
angle as illustrated in Fig. 10, where the lateral force is plotted as a function of slip
ratio sx for various slip angles. If longitudinal force is plotted against lateral force
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Figure 8. Lateral force versus slip ratio. Black dots with error bar: experimental determined data with
indication of statistical spread. Black solid line: combined-slip model.

for various slip angles, these curves can be well approximated by friction ellipses,
with major axes dependent on the slip angle:

(
Fx

Fx,max(βw)

)2

+
(

Fy

Fy,max(βw)

)2

= 1. (11)

Fy,max(β
w) is computed by setting the slip ratio sx = 0 in (9), whereas Fx,max(β

w)

is given by (10). This is shown in Fig. 11, where it can be seen that for a given
slip angle, the lateral force decreases gradually with the increase of the tractive
effort and vice versa. When a wheel is operated under conditions of simultaneous
longitudinal and lateral slip, the respective forces depart markedly from those values
derived under independent conditions. The application of longitudinal slip generally
tends to reduce the lateral force at a given slip angle and, conversely, the application
of slip angle reduces the longitudinal force that develops under a given traction
condition.

One should note that for low-speed planetary rovers, the centrifugal force act-
ing on the rover during steering maneuvers is very small and it does not affect
significantly the lateral dynamics of the vehicle. Thus, the only practical case of
interest for combined longitudinal and lateral slip corresponds to the presence of
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Table 3.
Wheel–soil parameters of the model obtained by exper-
imental data fitting for lunar soil simulant

μ Cx(N) Cy(N) Ax Ay

0.6 55 200 0.02 0.04

Figure 9. Longitudinal force as function of the slip ratio for different values of the slip angle. The
tractive effort for a slope with inclination of θ = 12◦ is also shown by a dashed line.

a transversal inclination of the terrain (bank angle), when the lateral component of
the vehicle’s weight force acts as an external disturbance.

Let us consider a scenario with the robot driving up a slope at constant speed.
The longitudinal tractive effort for one wheel of the robot is approximately equal
to Rx = W · sin θ , where θ is the inclination of the slope and W is one-quarter
of the total vehicle weight. Note that this value does not change if a simultaneous
transversal inclination is also present. The correspondent longitudinal slip can be
obtained from the graph of Fig. 9 by intersecting the value of the given Rx with
the curve of Fx for βw = 0. This value, denoted as sx,0, can be regarded as the
reference value of the slip ratio in the absence of lateral drift for the given slope.
If a lateral force is also present, due to a contemporary lateral inclination of the
terrain, the wheel will travel with an associated slip angle, resulting in a decrease in
the adhesion availability along the longitudinal direction. Thus, in order to balance
the same tractive effort, the wheel will need to build up a larger slip ratio sx . The
relationship between the slip ratio and the slip angle can be numerically obtained
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Figure 10. Lateral force as function of the slip ratio for different values of the slip angle.

Figure 11. Friction ellipsis relating the longitudinal and lateral force for constant slip angles. Note
that the curves at constant slip ratio are shown by a dash-dotted line.

under the assumption of constant tractive effort Rx and extended to the behavior of
the entire vehicle. The result is shown in Fig. 12. The curve can be approximated
by a linear equation without losing much accuracy:

sx =
{

sx,0, β � β0
sx,0 + k · (β − β0), β > β0, (12)
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Figure 12. Slip ratio versus slip angle relationship for a given terrain slope (θ = 12◦). Black line with
dots: simulated slip model; gray solid line: linear approximation.

where k is the slope of the linear approximation and β0 marks the beginning of the
increase in slip ratio due to lateral slip. The simplified model has the advantage of
being entirely defined by two constants, k and sx,0; it is easy to implement in soft-
ware and has low computational time. We recognize that the level of approximation
of the linear model depends on the value of the tractive effort Rx , i.e., the inclination
of the slope. However, in the typical operational range of the robot sx = [0,0.6] and
for the usual slopes traversed (θ = [5,20]◦), (12) represents a good estimate. Note
that out of this range, the behavior of the robot may become unstable with large drift
and (12) would lose its validity. Higher-order models may also be applied instead
of (12) with small improvement in accuracy at the cost of a greater complexity.
We also recognize that the values of the model’s parameters depend on the tractive
effort and the type of soil. For a given terrain, both k and sx,0 increase with the in-
clination of the slope. Thus, by measuring the current pitch angle of the robot with
an onboard sensor, it would be possible to adopt on-line methods of identification,
changing adaptively their values.

4. Experimental Results

In this section experimental results are presented, aimed at validating our approach
for lateral slip estimation by visual observation of the wheel trace. The correction
method for wheel slippage-incurred odometry errors, based on the longitudinal slip
versus lateral slip function sx(β), defined in Section 3.3, is also experimentally
demonstrated. The FTrace system was tested in the field using the rover El-Dorado,
outfitted with a cost-effective webcam acquiring at 5 Hz and with a field of view
on the ground plane corresponding to a 60-cm long × 80-cm wide area behind
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the left rear wheel. The test field was located on the shoreline of a sandy beach,
comprising large flat areas and sparse mounds of different extensions and heights.
In all experiments, the rover was remotely controlled using a wireless joypad and
commanded to follow a straight-line path with a travel speed of about 8 cm/s. Two
types of environment were considered:

• Set A: sandy relatively flat terrain. These experiments were aimed at evaluating
undue errors of the FTrace system incurred by low-slippage terrain.

• Set B: sandy non-flat terrain, including driving uphill or sideways on sandy
slopes with substantial lateral slip.

The entire experimental area was within the distance range (order of tens of meters)
of a laser-based absolute positioning system that provided the ground-truth transla-
tional position (x, y, z) with respect to a global coordinate frame. The ground-truth
sideslip angle of the robot βg was estimated as the difference between the absolute
vehicle heading direction ψl, derived by the laser position-measurement system,
and the vehicle heading ψ , measured by the onboard compass

ψl = arctan

(
ẏ

ẋ

)
(13)

βg = ψl − ψ. (14)

In the remainder of this section, the performance of the FTrace system are first
discussed in terms of robustness and accuracy, and then the results obtained from
the sComp odometry are presented.

4.1. FTrace System: Robustness Analysis

The FTrace system was tested over a total of 15 016 images (about 250 m of overall
travel distance) with Table 4 showing the results collected in both sets of experi-
ments. Figure 13 also shows some typical results obtained from sample images of
different tests. The percentage of false positives, i.e., a trace marker detected when
actually there is no trace marker, was less than 0.3% and limited to the initial mo-
ments of robot’s motion when no wheel track was present on the ground yet. Note
that in the initial stage, the FTrace system relies only on Hough transform to ex-
tract strong lines from the scene, which pass through the wheel center, whereas the
fuzzy inference system kicks in after the rover begins traveling. Conversely, false
negatives arise when the trace marker is present in the image, but the system is
not able to detect it at all and does not return any information. The percentage of
false negatives was less than 3%, and due largely to poor image segmentation and
camera calibration errors (80%), and model approximation (20%). In those cases
the last detected wheel trace is retained for comparison with the successive scenes.
This approach proved successfully since the number of consecutive false negatives
was always less than 3 (below 0.6 s). Finally, misidentifications refer to cases in
which a trace marker is present in the image, but the system fails in recognizing
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Table 4.
Results obtained from the FTrace system for different terrains (set A:
flat sandy terrain; set B: non-flat terrain)

Set Frames False False Misidentifications
positives (%) negatives (%) (%)

A 2560 0.1 1.5 0.0
B 12 456 0.2 2.7 0.8

Figure 13. Results obtained from the FTrace system under various terrain and environmental condi-
tions. See Table 4 for more details.

it properly and returns wrong information. In all tests, misidentifications were less
than 1%. Overall, the system proved to be robust to disturbances due to heavy shad-
owing, non-uniform terrain texture and presence of overlapping imprints. Note that
the knowledge of the pose of the trace in one image is used to determine the region
of interest to be searched for model detection in the next frame. This makes the
trace search more accurate and reduces computational requirement by eliminating
much of the scene, as shown by the second and third column of Fig. 13. In the first
column of Fig. 13, the detected trace and the output of the FTrace system is overlaid
over the original image.

4.2. FTrace System: Accuracy Analysis

The accuracy of the FTrace system in estimating the lateral drift of the robot was as-
sessed in two experiments on non-flat terrain. In the first test, El-Dorado was driven
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Figure 14. Traces produced by the wheels of the rover at the end of a sandy slope traverse: (a) front
view and (b) rear view.

up an approximately 5◦ sandy slope. During its path, the robot climbed sideways
on a large mound (Section 4.2.1), resulting in continuous and almost constant lat-
eral drift. In the second experiment, El-Dorado was also commanded to climb up an
approximately 5◦ sandy slope, but along its traverse it negotiated a series of consec-
utive small mounds (Section 4.2.2), experiencing alternating episodes of absence of
drift, and combined longitudinal and lateral slip.

4.2.1. Sideways Climbing
Figure 14 shows the position of El-Dorado and the imprints produced by its wheels
at the end of the run, from a front and rear view, respectively. The total travel dis-
tance resulted in about D = 7 m. The slip angle, derived from the FTrace system, is
compared with the ground-truth data in Fig. 15. The two curves show good agree-
ment with a root mean square (r.m.s.) error less than 1.5◦. The FTrace system
detected effectively the onset of sideslip and its successive trend throughout the
experiment. Two different stages can be distinguished during the test. In the first
stage, referring to the first 60 s, the robot followed its intended straight path without
any significant drift. This is demonstrated by the two wheel traces parallel to the
direction of motion. The second stage marks the onset of sideslip caused by the
external lateral force acting on the rover due to the transverse inclination of the ter-
rain. As a direct consequence, the angle of inclination of the wheel traces changes
(see also Fig. 14b), attesting to the feasibility of our approach.

4.2.2. Negotiation of Sandy Mounds
The final position of the rover is shown in Fig. 16, resulting in a total travel distance
of about D = 13 m. Figure 17 shows the slip angle as estimated by the FTrace sys-
tem, compared with the ground truth data. Also in this second experiment, a good
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Figure 15. Accuracy of the FTrace system in estimating slip angle for a sandy slope traverse.

Figure 16. Traces produced by the wheels of the rover after the negotiation of consecutive sandy
mounds: (a) front view and (b) rear view.

match between the two curves can be observed with a r.m.s. error less than 2◦.
Both the two large drifts experienced by the robot were successfully detected and
measured.

In all similar experiments, the accuracy of the FTrace system was consistent with
the results presented above, which can, then, be regarded as of general significance.
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Figure 17. Effectiveness of the FTrace system in estimating the slip angle during negotiation of sandy
mounds.

Finally, one should note that at the typical low speeds of planetary rovers the FTrace
system provides a fast measurement update every few centimeters of travel distance
(less than 2 cm in our case), allowing the system accuracy not to be significantly
affected by the straight-line approximation of the wheel track model.

4.3. Slippage Correction (sComp)

In this section, we discuss the effectiveness of the sComp method by applying
the proposed correction of slippage-incurred odometry errors to the experiments
presented in Section 4.2. With reference to Fig. 3, the slip-corrected velocity com-
ponents of the robot in a body-fixed reference system can be obtained as:

Vx =
{

rw · ω · (1 − sx,0), β � β0
rw · ω · (1 − sx,0 + k · (β − β0)), β > β0

(15)

Vy = Vx · tanβ, (16)

where the slip angle β is measured by the FTrace system and ω is the angular speed
of wheels measured by encoders. Note that, due to the high gear ratio (1500:1) of
El-Dorado’s drive motors, the angular speed of the wheels does not change signifi-
cantly even in the presence of high combined slip and, thus, ω can be estimated by
averaging between the four wheels. In order to know the motion of the vehicle in a
fixed reference frame, the following transformation is required,[

V x

V y

]
=

[
cosψ − sinψ

sinψ cosψ

]
·
[

Vx

Vy

]
, (17)

where V x and V y are the velocity components in the fixed reference frame and ψ

is the absolute orientation of the robot in the inertial frame that can be measured by
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the onboard compass. Finally, the path of the robot can be obtained from (17) by
integration.

4.3.1. Sideways Climbing
We recall from Section 3.3 that sx(β) is a linearized function defined by the para-
meters sx,0 and k. These parameters were experimentally found for the given terrain
through a minimization process using the absolute ground-truth measurements pro-
vided by the laser-based position estimation system. In Fig. 18, the performance
of the system in terms of estimation of longitudinal slip sx is compared with the
ground-truth data. The curves show good agreement; the r.m.s. error in the mea-
surement of the slip ratio was less than 0.1. Figure 19 shows the path followed
by the robot as estimated by plain odometry by a dashed black line. The path de-
rived from our slippage-compensated odometry is shown by a solid gray line. Both
data can be compared with the ground-truth shown by a solid black line. An ab-
solute error E was computed for the estimation of the final position of the robot
P = (Px,Py) as:

E =
√(

Px − P
gt
x

)2 + (
Py − P

gt
y

)2
, (18)

where the superscript ‘gt’ refers to ground-truth data. We refer to this type of error
since we believe that it provides a better description of the performance of the sys-
tem, by serving also as an indicator of the typical accumulation error of odometry.
Plain odometry estimated an apparent straight path, without detecting any occur-
rence of slippage and the associated deviation of the vehicle from the intended
course. The error in the estimation of the final position of the robot using odome-
try was Ee = 2.84 m. If odometry is enhanced by measuring the actual heading of
the robot with an onboard compass rather than wheel encoders, the error was de-
creased to Eoc = 2.50 m. When using the sComp odometry the final position error

Figure 18. Slip ratio estimation during the traverse of a sandy slope.
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Figure 19. Position estimation of the rover path during the traverse of a sandy slope.

was limited to EsC = 0.14 m with an overall reduction of 95% with respect to plain
odometry and 83% compared to compass-enhanced odometry.

4.3.2. Negotiation of Sandy Mounds
In order to prove the validity of the integrated slip model, the set of parameters of
the function sx(β) used in the previous experiment, denominated ‘sideways climb-
ing’, was also adopted for this test. The longitudinal slip, inferred from the FTrace
system, is compared with the ground-truth data in Fig. 20. A good match between
the two curves was found with a r.m.s. error of 0.1. Figure 21 compares the path
of the robot as estimated by plain odometry and using the sComp odometry. Again,
plain odometry estimated a seeming straight path, shown by a black dashed line,
without detecting any deviation of the vehicle from the desired course. The error in
the estimation of the final position of the robot was Ee = 2.90 m, using plain odom-
etry. If odometry is enhanced by the onboard compass (gray dashed line), the error
was reduced to Eec = 1.98 m. When using the sComp odometry the same error was
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Figure 20. Slip ratio estimation during the negotiation of sandy mounds.

Figure 21. Position estimation of the rover during the negotiation of sandy mounds.
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Table 5.
Experimental conditions and results for the two experiments described in Sections 4.2 and 4.3 (see
Figs 19 and 21 for detailed results)

Test Terrain features FTrace system Final position error (m) Error
reduction
(%)Eβ (◦) Esx Plain Enhanced sComp

odometry odometry odometry

1 Moderate sandy slope 1.4 0.06 2.84 2.50 0.14 95
with simultaneous
transverse inclination

2 Moderate sandy slope 1.6 0.10 2.9 1.98 0.41 86
with sparse mounds

Eβ is the r.m.s. error in the estimation of the slip angle; Esx refers to the error in the slip ratio
measurement.

limited to EsC = 0.41 m with a reduction of 86% with respect to plain odometry,
and 80% compared to compass-enhanced odometry.

An overview of the experimental results presented in this section is shown in
Table 5.

5. Conclusions

In this paper, a novel method for sideslip estimation was presented, based on ob-
serving the wheel traces left by a robot during its traverse of loose sandy terrains.
The paper also discussed an integrated longitudinal and lateral wheel–terrain slip
model and its application to improve the position estimation accuracy of a mobile
robot. Comprehensive experiments in the field demonstrated the overall effective-
ness of the proposed approach. The FTrace method was able to measure the slip
angle of the robot with a worst case of less than 3% of failed observations and
1.6◦ of accuracy. The sComp odometry was also shown to be effective in correcting
odometry errors caused by wheel slippage during traverse of sandy slopes. Errors
were reduced by up to 95% when compared with conventional dead-reckoning on
the same terrain. Even under conditions of extensive and alternating slip, the system
kept odometry errors to well under 4% of the total travel distance.
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